I just threw this in wolframalpha.com
Possible intermediate steps:
integral sqrt(4 x-x^2) dx
For the integrand sqrt(4 x-x^2), complete the square:
= integral sqrt(4-(x-2)^2) dx
For the integrand sqrt(4-(x-2)^2), substitute u = x-2 and du = dx:
= integral sqrt(4-u^2) du
For the integrand, sqrt(4-u^2) substitute u = 2 sin(s) and du = 2 cos(s) ds. Then sqrt(4-u^2) = sqrt(4-4 sin^2(s)) = 2 cos(s) and s = sin^(-1)(u/2):
= 4 integral cos^2(s) ds
Write cos^2(s) as 1/2 cos(2 s)+1/2:
= 4 integral (1/2 cos(2 s)+1/2) ds
Integrate the sum term by term and factor out constants:
= 4 integral 1/2 ds+2 integral cos(2 s) ds
For the integrand cos(2 s), substitute p = 2 s and dp = 2 ds:
= integral cos(p) dp+4 integral 1/2 ds
The integral of 1/2 is s/2:
= integral cos(p) dp+2 s
The integral of cos(p) is sin(p):
= sin(p)+2 s+constant
Substitute back for p = 2 s:
= 2 s+sin(2 s)+constant
Substitute back for s = sin^(-1)(u/2):
= 1/2 sqrt(4-u^2) u+2 sin^(-1)(u/2)+constant
Substitute back for u = x-2:
= 1/2 sqrt(-(x-4) x) (x-2)+2 sin^(-1)((x-2)/2)+constant
Factor the answer a different way:
= 1/2 sqrt(4-x) x^(3/2)-sqrt(-(x-4) x)+2 sin^(-1)((x-2)/2)+constant
Which is equivalent for restricted x values to:
= (sqrt(-(x-4) x) (sqrt(x-4) (x-2) sqrt(x)-8 log(2 (sqrt(x-4)+sqrt(x)))))/(2 sqrt(x-4) sqrt(x))+constant