Let r = radius of the base and h = height of the cylinder
V = pi r^2 h = 16pi
r^2 h = 16 ------------------------------- (1)
S(r,h) = 2pir^2 + 2pi rh ,since from (1) h = 16/r^2 [ top + bottom + curved surface = S ]
S (r)= 2pi r^2 + 2pi r(16/r^2)
S(r) = 2pi r^2 + 2pi (16/r)
S(r) = 2pi r^2 + (32pi /r)
S'(r) = 4pi r - (32pi /r^2)
= 4pi ( r - (8/r^2)) = 0 => r - (8/r^2) = 0
=> r = 8/r^2
= > r^3 = 8
=> r = 2
Since S'(r) = 4pi r - (32pi /r^2) , S" ( r) = 4pi +(64pi/ r^3 )
S"(2) = 4pi +(64pi/ 2^3 ) = 4pi + (64pi/8) =4pi + 8pi = 12pi > 0
Hence , r = 2 is the radius which would minimize the use of tin sheet.
r^2 h = 16
(2^2)h =16
4h =16
h =16/4
h =4