Since r is a root of x^5=1,
so r^5=1......(1)
Since r not equal to 1,so r-1 not equal to 0.
So (r^5-1)/(r-1)=0 [From (1)]
=>1+r+r²+r³+r^4=0 ..........(2)
[ Since we have the result
(rⁿ-1)/(r-1)
=1+r+r²+r³+......+r^(n-1) ]
Therefore
( r - 1 ) ( r² - 1 ) ( r³ - 1 ) ( r^4 - 1 )
= ( r - 1 ) ( r^4 - 1 ) ( r² - 1 ) ( r³ - 1 )
= ( r^5 - r^4 - r + 1 ) ( r^5 - r³ - r² + 1 )
= ( 1 - r^4 - r + 1 ) ( 1 -r³ - r² + 1 ) [As r^5=1]
= ( r^4 + r - 2 ) (r³ + r² - 2 )
= [ - ( 1 + r³ + r² ) - 2 ] ( r³ + r² - 2 )
= - ( r³ + r² + 3 ) ( r³ + r² - 2 )
= - [ ( r³ + r² )² + r³ + r² - 6 ]
= - [ r^6 + 2 r^5 + r^4 + r³ + r² - 6 ]
= - [ r + 2 + r^4 + r³ + r² - 6 ]
[Since r^6 = r . r^5 = r . 1 = r ]
= - [ r^4 + r³ + r² + r - 4 ]
= - ( - 1 - 4 ) [ From (2) , r^4 + r³ + r² + r = - 1 ]
= 5