You are supposed to go in circles. Until you figure out the way out, that is. Which is kind of tricky:
Let denote f(x) = ∫exp(2x) sin(x) dx
f(x) = ∫exp(2x) sin(x) dx =
= - ∫exp(2x) d[cos(x)] =
by parts
= -[ exp(2x) cos(x) - ∫cos(x) d[exp(2x)] ]=
= -[ exp(2x) cos(x) - 2∫exp(2x) cos(x) dx] ]=
= -[ exp(2x) cos(x) - 2∫exp(2x) d[sin(x)] ]=
by parts agian
= -[exp(2x) cos(x) - 2[exp(2x) sin(x) - ∫sin(x) d[exp(2x)] ]] =
= -[exp(2x)[cos(x) - 2sin(x)] + 4 ∫sin(x) exp(2x) dx ] =
now the tricky part:
= -[exp(2x)[cos(x) - 2sin(x)] + 4f(x)]
or
f(x) = -[exp(2x)[cos(x) - 2sin(x)] + 4f(x)]
5f(x) = -exp(2x)[cos(x) - 2sin(x)]
f(x) = -1/5 exp(2x)[cos(x) - 2sin(x)]