"In mathematics, a complex number is a number of the form
a + bi
where a and b are real numbers, and i is the imaginary unit, with the property i 2 = −1. The real number a is called the real part of the complex number, and the real number b is the imaginary part. Real numbers may be considered to be complex numbers with imaginary part set to zero, that is, the real number a is equivalent to the complex number a+0i.
For example, 3 + 2i is a complex number, with real part 3 and imaginary part 2. If z = a + bi, the real part (a) is denoted Re(z), and the imaginary part (b) is denoted Im(z).
Applications:
The words "real" and "imaginary" were meaningful when complex numbers were used mainly as an aid in manipulating "real" numbers, with only the "real" part directly describing the world. Later applications, and especially the discovery of quantum mechanics, showed that nature has no preference for "real" numbers and its most real descriptions often require complex numbers, the "imaginary" part being just as physical as the "real" part.
Control theory
In control theory, systems are often transformed from the time domain to the frequency domain using the Laplace transform. The system's poles and zeros are then analyzed in the complex plane. The root locus, Nyquist plot, and Nichols plot techniques all make use of the complex plane.
In the root locus method, it is especially important whether the poles and zeros are in the left or right half planes, i.e. have real part greater than or less than zero. If a system has poles that are in the right half plane, it will be unstable, all in the left half plane, it will be stable, on the imaginary axis, it will have marginal stability. If a system has zeros in the right half plane, it is a nonminimum phase system.
Signal analysis
Complex numbers are used in signal analysis and other fields as a convenient description for periodically varying signals. The absolute value |z| is interpreted as the amplitude and the argument arg(z) as the phase of a sine wave of given frequency.
If Fourier analysis is employed to write a given real-valued signal as a sum of periodic functions, these periodic functions are often written as complex valued functionswhere ω represents the angular frequency and the complex number z encodes the phase and amplitude as explained above.
In electrical engineering, the Fourier transform is used to analyze varying voltages and currents. The treatment of resistors, capacitors, and inductors can then be unified by introducing imaginary, frequency-dependent resistances for the latter two and combining all three in a single complex number called the impedance. (Electrical engineers and some physicists use the letter j for the imaginary unit since i is typically reserved for varying currents and may come into conflict with i.) This use is also extended into digital signal processing and digital image processing, which utilize digital versions of Fourier analysis (and Wavelet analysis) to transmit, compress, restore, and otherwise process digital audio signals, still images, and video signals.
Improper integrals
In applied fields, the use of complex analysis is often used to compute certain real-valued improper integrals, by means of complex-valued functions. Several methods exist to do this, see methods of contour integration.
Quantum mechanics
The complex number field is also of utmost importance in quantum mechanics since the underlying theory is built on (infinite dimensional) Hilbert spaces over C. The more limited original formulations of Schrödinger and Heisenberg are also in terms of complex numbers.
Relativity
In special and general relativity, some formulae for the metric on spacetime become simpler if one takes the time variable to be imaginary.
Applied mathematics
In differential equations, it is common to first find all complex roots r of the characteristic equation of a linear differential equation and then attempt to solve the system in terms of base functions of the form f(t) = ert.
Fluid dynamics
In fluid dynamics, complex functions are used to describe potential flow in 2d.
Fractals
Certain fractals are plotted in the complex plane e.g. Mandelbrot set and Julia set."
From Wikipedia, the free, online encyclopedia at:
http://en.wikipedia.org/wiki/Complex_numbers
Hope this helps!