Question:
HOW TO INTEGRATE THIS>>> (x^2) (e^3x) sin(3x) dx?
cheetah
2013-01-20 00:02:10 UTC
integrate (x^2) (e^3x) sin(3x) dx

i tried integration by parts... but i think it wasn't the right thing to do...
any idea how to do this?
Five answers:
∫εαçℏ
2013-01-22 11:11:56 UTC
u.............v'

x²............e^(3x)sin3x

2x...........1/6 e^(3x)(sin3x-cos3x)

2............. - 1/18 e^(3x)cos3x

0............. -1/108 e^(3x)(sin3x+cos3x)



Thus, the integral

=1/6 x²e^(3x)(sin3x-cos3x) +1/9 xe^(3x)cos3x - 1/54 e^(3x)(sin3x+cos3x) + C



You can rewrite the answer to other forms but I will just leave it like that.



With this method, I assume you know how to integrate e^(3x)sin3x or e^(3x)cos3x

You just need to do integration by parts, letting u = e^3x, v' = sin3x or cos3x
Elizabeth M
2013-01-20 01:49:19 UTC
The answer is (1/54)e^(3x)[(9x^2-1)sin(3x) - (1-3x)^2cos(3x)]+C.

It is not easy to do by parts, but you could try integrating (x^2)(e^(3x)) by parts

and if this is f(x) , integrate f(x)sin(3x) by parts.
gôhpihán
2013-01-22 07:58:55 UTC
First, by Chain Rule, we have to determine the following derivatives

d/dx (x² sinx) = x² cosx + 2x sinx

d/dx (x² cosx) = -x² sinx + 2x cosx

d/dx (x cosx) = -x sinx + cosx



Simplify the expression



∫ x² e^(3x) sin(3x) dx, let y = 3x

= (1/27) ∫ y² siny e^y dy



The trick for each integration by parts is to isolate the exponential term as the integrating factor



∫ y² siny e^y dy, Integrate by Parts, u = y² siny, dv = e^y dy

= ∫ u dv

= uv - ∫ v du

= y² siny e^y - ∫ y² cosy e^y dy - 2 ∫ y siny e^y dy ............... [1]



∫ y² cosy e^y dy, Integrate by Parts, u' = y² cosy, dv' = e^y dy

= u' v' - ∫ v' du'

= y² cosy e^y + ∫ y² siny dy - 2 ∫ y cosy e^y dy ................. [2]



Substitute [2] into [1]:

∫ y² siny e^y dy = y² siny e^y - [ y² cosy e^y + ∫ y² siny dy - 2 ∫ y cosy e^y dy ] - 2 ∫ y siny e^y dy

.

∫ y² siny e^y dy = y² siny e^y - y² cosy e^y - ∫ y² siny dy + 2 ∫ y cosy e^y dy - 2 ∫ y siny e^y dy

.

2 ∫ y² siny e^y dy = y² siny e^y - y² cosy e^y + 2 ∫ y cosy e^y dy - 2 ∫ y siny e^y dy

.

∫ y² siny e^y dy = (1/2) y² siny e^y - (1/2) y² cosy e^y + ∫ y cosy e^y dy - ∫ y siny e^y dy ........... [3]



∫ y cosy e^y dy, Integrate by Parts, let U = y cosy, dV = e^y dy

= ∫ U dV

= UV - ∫ V dU

= y cosy e^y + ∫ y siny e^y dy - ∫ cosy e^y dy .................. [4]



Substitute [4] into [3]:

∫ y² siny e^y dy

= (1/2) y² siny e^y - (1/2) y² cosy e^y + y cosy e^y + ∫ y siny e^y dy - ∫ cosy e^y dy - ∫ y siny e^y dy

= (1/2) y² siny e^y - (1/2) y² cosy e^y + y cosy e^y - ∫ cosy e^y dy ............... [5]



∫ cosy e^y dy, Integrate by Parts, U' = cosy, dV' = e^y dy

= ∫ U' dV'

= U' V' - ∫ V' dU'

= cosy e^y + ∫ siny e^y dy, Integrate by Parts, U'' = siny, dV'' = e^y dy

= cosy e^y + ∫ U'' dV''

= cosy e^y + U'' V'' - ∫ V'' dU''

= cosy e^y + siny e^y - ∫ cosy e^y dy



==> 2 ∫ cosy e^y dy = cosy e^y + siny e^y

==> ∫ cosy e^y dy = (1/2) cosy e^y + (1/2) siny e^y ................... [6]



Substitute [6] into [5]:

∫ y² siny e^y dy

= (1/2) y² siny e^y - (1/2) y² cosy e^y + y cosy e^y - (1/2) cosy e^y - (1/2) siny e^y

= (1/2) y² siny e^y - (1/2) y² cosy e^y + (1/2) cosy e^y - (1/2) siny e^y



Substitute by y = 3x and add an arbitrary constant C and you're done

∫ x² e^(3x) sin(3x) dx

= (1/27) ∫ y² siny e^y dy

= (1/54) [ y² siny e^y - y² cosy e^y + cosy e^y - siny e^y ] + C

= (1/54) [ 9x² sin(3x) e^(3x) - 9x² cos(3x) e^(3x) + cos(3x) e^(3x) - sin(3x) e^(3x) ] + C

= (1/54) e^(3x) [ 9x² sin(3x) - 9x² cos(3x) + cos(3x) - sin(3x) ] + C

= (1/54) e^(3x) [ (9x² - 1) sin(3x) - (9x² - 1) cos(3x) ] + C

= (√2 /54) (9x² - 1) sin(3x - π/4) e^(3x) + C
?
2017-01-11 15:50:44 UTC
i'm in Australia and today there is an advert going round about a four wheel drive and its fairly humorous it has this guy attempting to get his canines to bounce in to the decrease back of the automobile , then there is chick who possibilities her canines up smothers it in kisses and places it interior the decrease back, then the better area is this guy who opens the decrease back up and stands ack an says " get i Boris" and hes talking to a croc is hilarious :p
Robert
2013-01-20 03:25:00 UTC
cos θ = {(e^iθ) + (e^-iθ)} / 2 (where i = √ -1)



i sin θ = {(e^i θ) - (e^-i θ)} / 2



=> sinθ = {(e^i θ) - (e^-i θ)} / 2i



=> sin3x = {(e^3ix) - (e^-3ix)} / 2i



=> (e^3x) sin(3x) = (e^3x) X {(e^3ix) - (e^-3ix)} / 2i



=> (e^3x) sin(3x) = [{e^3x(i+1)} - {e^3x(1-i)}] / 2i



=> (x^2) (e^3x) sin(3x) = [x^2{e^3x(i+1)} - x^2{e^3x(1-i)}] / 2i



∫(x^2) (e^3x) sin(3x) dx =(1 / 2i) ∫ x^2{e^3x(i+1)}dx - (1 / 2i) ∫ x^2{e^3x(1-i)}dx



3(i+1) and 3(i-1) are constants


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...