dracula
2008-10-19 03:17:28 UTC
x = (-b +/- √ b^2 - 4ac) / 2a
Xi = (-b +√ b^2 - 4ac) / 2a. Xii = (-b - √ b^2 - 4ac) / 2a
Xi - Xii = 3 since they differ by 3
Xi - Xii = [(-b +√ b^2 - 4ac) / 2a] - [(-b - √ b^2 - 4ac) / 2a]
= (-b +√ b^2 - 4ac) / 2a + (b +√ b^2 - 4ac) / 2a
= (b^2 - 4ac) / 2a, since Xi - Xii = 3 therefore
3 = (b^2 - 4ac) / 2a
6a = b^2 - 4ac
b^2 = 6a + 4ac <<<<
Three answers:
Prasad
2008-10-19 03:44:21 UTC
Xi - Xii = [(-b +√ b^2 - 4ac) / 2a] - [(-b - √ b^2 - 4ac) / 2a]
= (-b +√ b^2 - 4ac) / 2a + (b +√ b^2 - 4ac) / 2a
Take the common denominator out
= [-b +√ (b^2 - 4ac) + b +√ (b^2 - 4ac)] / 2a
= [√ (b^2 - 4ac) + √ (b^2 - 4ac)] / 2a
= 2 √(b^2 - 4ac) / 2a
= √(b^2 - 4ac) / a
This equals to 3 as per the given fact
So, √(b^2 - 4ac) / a = 3
ie. √(b^2 - 4ac) = 3 a
Square both sides
(b^2 - 4ac) = 9 a^2
So, b^2 = 9a^2 + 4ac . Hence Proved
JoeSchmo5819
2008-10-19 10:35:36 UTC
(-b +√ b^2 - 4ac) / 2a) + (b +√ b^2 - 4ac) / 2a
But on your next line you have that this simplifies to (b^2 - 4ac)/2a. But actually, the only things that cancel out are the b's (-b + b = 0).
So you're left with...
(√ b^2 - 4ac)/2a + (√ b^2 - 4ac) / 2a
= 2(√b^2 - 4ac)/2a = (√b^2 - 4ac)/a
Now set that equal to 3 and solve for b...
stanschim
2008-10-19 10:47:59 UTC
3 = [-b + (b^2-4ac)^(1/2)] / 2a -
[-b - (b^2-4ac)^(1/2)] / 2a
3 = [2(b^2-4ac)^(1/2)] / 2a
3= [(b^2-4ac)^(1/2)] / a
3a = (b^2-4ac)^(1/2)
9a^2 = b^2 - 4ac
b^2 = 9a^2 + 4ac
ⓘ
This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.