3ln(x²) - 3ln|x²-4y²| = 8ln|x| + C
3ln(x²) - 3ln|x²-4y²| - 8ln|x| = C
Remember the property of logarithms:
nln a = ln a^n, so:
3ln(x²) - 3ln|x²-4y²| - 8ln|x| = C
ln((x²)³) - ln(|x² - 4y²|³) - ln(|x|^8) = C
Also, remember that x² = |x|², and |x|^8 = (|x|^2)^4 = x^8, so:
ln(x^6) - ln(|x² - 4y²|³) - ln(x^8) = C
Lastly, remember that:
ln a + ln b = ln(ab), and ln a - ln b = ln(a/b), so:
ln(x^6) - ln(|x² - 4y²|³) - ln(x^8) = C
ln(x^6/x^8) - ln(|x² - 4y²|³) = C
ln(1/x²) - ln(|x² - 4y²|³) = C
ln((1/x²)/|x² - 4y²|³) = C
ln(1/|x² - 4y²|³x²) = C
e^(ln(1/|x² - 4y²|³x²)) = e^C, if C is a constant, then e^C is also a constant:
1/|x² - 4y²|³x² = C
|x² - 4y²|³x² = 1/C, if C is a constant, then 1/C is also a constant:
|x² - 4y²|³x² = C
Notice that while C ≠ e^C ≠ 1/(e^C), they are all constant. C is supposed to represent an arbitrary constant number, so on that case we write C = e^C = 1/(e^C), since they all represent arbitrary constants, we make them assume any number we want.