a bit late, but whatever. if i m right (and correct me if i m not) then the previous two answers are incorrect.
note that x is unequal to 0. integrate by parts, setting u=e^x and dv=lnxdx
then du=e^xdx and v=xlnx-x
thus, we have integral(e^x*lnx)dx = e^x(xlnx-x) - integral(e^x(xlnx-x)dx
= e^x(xlnx-x) + integral(xe^x)dx - integral(xe^x(lnx))dx (*)
knowing that integral(xe^x)dx = xe^x - e^x + c, and then integrating the second integral on the LHS of (*) by parts, setting u=x and dv=e^xlnxdx, (*) becomes
e^x(xlnx-x)+xe^x-e^x-x*[integral(e^xlnx)dx]+integral(e^xlnx)dx (=integral(e^xlnx)dx)
cancelling integral(e^xlnx)dx from both sides of this equation, and then rearranging to make
x*[integral(e^xlnx)dx] the subject, we now have:
x*[integral(e^xlnx)dx] = e^x(xlnx-x)+xe^x-e^x
giving the result
integral(e^xlnx)dx = e^x(lnx-1)+e^x-[(e^x)/x]+C (allowed since x is unequal to 0)