(20 + 14 * sqrt(2))^(1/3) + (20 - 14 * sqrt(2))^(1/3)
Cube everything
a = (20 + 14 * sqrt(2))^(1/3)
b = (20 - 14 * sqrt(2))^(1/3)
(a + b)^3 =>
a^3 + 3a^2 * b + 3ab^2 + b^3 =>
a^3 + b^3 + 3ab * (a + b) =>
20 + 14 * sqrt(2) + 20 - 14 * sqrt(2) + 3 * ((20 + 14 * sqrt(2)) * (20 - 14 * sqrt(2)))^(1/3) * ((20 + 14 * sqrt(2))^(1/3) + (20 + 14 * sqrt(2))^(1/3)) =>
40 + 3 * (400 - 196 * 2)^(1/3) * (a + b) =>
40 + 3 * (400 - 392)^(1/3) * (a + b) =>
40 + 3 * 8^(1/3) * (a + b) =>
40 + 3 * 2 * (a + b) =>
40 + 6 * (a + b)
(a + b)^3 = 6 * (a + b) + 40
a + b = x
x^3 = 6x + 40
x^3 - 6x - 40 = 0
Try the rational root theorem to find solutions for x
x = -40 , -20 , -10 , -8 , -5 , -4 , -2 , -1 , 1 , 2 , 4 , 5 , 8 , 10 , 20 , 40
x = 1 : 1 - 6 - 40 = 1 - 46 = -45
x = 2 : 8 - 12 - 40 = 8 - 52 = -44
x = 4 : 64 - 24 - 40 = 64 - 64 = 0
x = 4 is a solution, so x - 4 is a factor
(x - 4) * (ax^2 + bx + c) = x^3 - 6x - 40
ax^3 + bx^2 + cx - 4ax^2 - 4bx - 4c = x^3 + 0x^2 - 6x - 40
a = 1
b - 4a = 0
b = 4a
b = 4
c - 4b = -6
c - 16 = -6
c = 10
-4c = -40
-40 = -40
(x - 4) * (x^2 + 4x + 10)
(x - 4) * (x^2 + 4x + 4 + 6)
(x - 4) * ((x + 2)^2 + 6)
(x + 2)^2 + 6 = 0
(x + 2)^2 = -6
No real solution
So
(20 + 14 * sqrt(2))^(1/3) + (20 - 14 * sqrt(2))^(1/3) = 4
Now we have:
log[2](4) =>
log[2](2^2) =>
2 * log[2](2) =>
2 * 1 =>
2