Question:
what is statistics?
sarfraz a
2008-05-13 03:49:32 UTC
define statistics?and its types.
Eight answers:
anonymous
2008-05-13 03:59:01 UTC
Statistics is a mathematical science pertaining to the collection, analysis, interpretation or explanation, and presentation of data.





Statistical techniques:

Some well known statistical tests and procedures for research observations are:



* Student's t-test

* chi-square test

* Analysis of variance (ANOVA)

* Mann-Whitney U

* Regression analysis

* Factor Analysis

* Correlation

* Pearson product-moment correlation coefficient

* Spearman's rank correlation coefficient

* Time Series Analysis





Specialized disciplines:

Some fields of inquiry use applied statistics so extensively that they have specialized terminology. These disciplines include:



* Actuarial science

* Applied information economics

* Bio statistics

* Bootstrap & Jackknife Resampling

* Business statistics

* Data mining (applying statistics and pattern recognition to discover knowledge from data)

* Demography

* Economic statistics (Econometrics)

* Energy statistics

* Engineering statistics

* Environmental Statistics

* Epidemiology

* Geography and Geographic Information Systems, more specifically in Spatial analysis

* Image processing

* Multivariate Analysis

* Psychological statistics

* Quality

* Social statistics

* Statistical literacy

* Statistical modeling

* Statistical surveys

* Process analysis and chemometrics (for analysis of data from analytical chemistry and chemical engineering)

* Survival analysis

* Reliability engineering

* Statistics in various sports, particularly baseball and cricket
Jonna
2008-05-13 03:59:28 UTC
Statistics is a mathematical science pertaining to the collection, analysis, interpretation or explanation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the natural and social sciences to the humanities, and to government and business.
?
2014-11-28 02:45:50 UTC
Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data.
anonymous
2008-05-13 03:59:56 UTC
Statistics is a mathematical science pertaining to the collection, analysis, interpretation or explanation, and presentation of data.





for more details log on to : www.en.wikipedia.org and search
anonymous
2008-05-13 04:17:11 UTC
A branch of science dealing with analysis and interpretation of data. As an extension, Data collection is also included in this term
surelove
2008-05-13 04:07:06 UTC
Collection of Sample, Actual, Projected, performed DATA s

for any given field and analyse and present the report based on the samples for reference. Fields are Populations, Manufacturing process, return on Investment, village development, education, medical are the some of the fields which uses this tool.
smilewithtear
2013-09-28 08:26:30 UTC
Statistics is subject of science used to collect data, organize it, analyze it, interpret it and make some inferences from it.
mathshelpline_help
2008-05-13 04:17:39 UTC
Statistics



"Statistical science" redirects here. For the review journal, see Statistical Science (journal).



A graph of a normal bell curve showing statistics used in standardized testing assessment. The scales include standard deviations, cumulative percentages, percentile equivalents, Z-scores, T-scores, standard nines, and percentages in standard nines.Statistics is a mathematical science pertaining to the collection, analysis, interpretation or explanation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the natural and social sciences to the humanities, and to government and business.



Statistical methods can be used to summarize or describe a collection of data; this is called descriptive statistics. In addition, patterns in the data may be modeled in a way that accounts for randomness and uncertainty in the observations, and then used to draw inferences about the process or population being studied; this is called inferential statistics. Both descriptive and inferential statistics comprise applied statistics. There is also a discipline called mathematical statistics, which is concerned with the theoretical basis of the subject.



The word statistics is also the plural of statistic (singular), which refers to the result of applying a statistical algorithm to a set of data, as in economic statistics, crime statistics, etc.



History

Main article: History of statistics

Some scholars pinpoint the origin of statistics to 1662, with the publication of "Observatons on the Bills of Mortality" by John Graunt. Early applications of statistical thinking revolved around the needs of states to base policy on demographic and economic data. The scope of the discipline of statistics broadened in the early 19th century to include the collection and analysis of data in general. Today, statistics is widely employed in government, business, and the natural and social sciences.



Because of its empirical roots and its applications, statistics is generally considered not to be a subfield of pure mathematics, but rather a distinct branch of applied mathematics. Its mathematical foundations were laid in the 17th century with the development of probability theory by Pascal and Fermat. Probability theory arose from the study of games of chance. The method of least squares was first described by Carl Friedrich Gauss around 1794. The use of modern computers has expedited large-scale statistical computation, and has also made possible new methods that are impractical to perform manually.





Overview

In applying statistics to a scientific, industrial, or societal problem, one begins with a process or population to be studied. This might be a population of people in a country, of crystal grains in a rock, or of goods manufactured by a particular factory during a given period. It may instead be a process observed at various times; data collected about this kind of "population" constitute what is called a time series.



For practical reasons, rather than compiling data about an entire population, one usually studies a chosen subset of the population, called a sample. Data are collected about the sample in an observational or experimental setting. The data are then subjected to statistical analysis, which serves two related purposes: description and inference.



Descriptive statistics can be used to summarize the data, either numerically or graphically, to describe the sample. Basic examples of numerical descriptors include the mean and standard deviation. Graphical summarizations include various kinds of charts and graphs.

Inferential statistics is used to model patterns in the data, accounting for randomness and drawing inferences about the larger population. These inferences may take the form of answers to yes/no questions (hypothesis testing), estimates of numerical characteristics (estimation), descriptions of association (correlation), or modeling of relationships (regression). Other modeling techniques include ANOVA, time series, and data mining.

“… it is only the manipulation of uncertainty that interests us. We are not concerned with the matter that is uncertain. Thus we do not study the mechanism of rain; only whether it will rain.”

Dennis Lindley, "The Philosophy of Statistics", The Statistician (2000).

The concept of correlation is particularly noteworthy. Statistical analysis of a data set may reveal that two variables (that is, two properties of the population under consideration) tend to vary together, as if they are connected. For example, a study of annual income and age of death among people might find that poor people tend to have shorter lives than affluent people. The two variables are said to be correlated (which is a positive correlation in this case). However, one cannot immediately infer the existence of a causal relationship between the two variables. (See Correlation does not imply causation.) The correlated phenomena could be caused by a third, previously unconsidered phenomenon, called a lurking variable or confounding variable.



If the sample is representative of the population, then inferences and conclusions made from the sample can be extended to the population as a whole. A major problem lies in determining the extent to which the chosen sample is representative. Statistics offers methods to estimate and correct for randomness in the sample and in the data collection procedure, as well as methods for designing robust experiments in the first place. (See experimental design.)



The fundamental mathematical concept employed in understanding such randomness is probability. Mathematical statistics (also called statistical theory) is the branch of applied mathematics that uses probability theory and analysis to examine the theoretical basis of statistics.



The use of any statistical method is valid only when the system or population under consideration satisfies the basic mathematical assumptions of the method. Misuse of statistics can produce subtle but serious errors in description and interpretation — subtle in the sense that even experienced professionals sometimes make such errors, serious in the sense that they may affect, for instance, social policy, medical practice and the reliability of structures such as bridges. Even when statistics is correctly applied, the results can be difficult for the non-expert to interpret. For example, the statistical significance of a trend in the data, which measures the extent to which the trend could be caused by random variation in the sample, may not agree with one's intuitive sense of its significance. The set of basic statistical skills (and skepticism) needed by people to deal with information in their everyday lives is referred to as statistical literacy.





[edit] Statistical methods



[edit] Experimental and observational studies

A common goal for a statistical research project is to investigate causality, and in particular to draw a conclusion on the effect of changes in the values of predictors or independent variables on response or dependent variables. There are two major types of causal statistical studies, experimental studies and observational studies. In both types of studies, the effect of differences of an independent variable (or variables) on the behavior of the dependent variable are observed. The difference between the two types lies in how the study is actually conducted. Each can be very effective.



An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation. Instead, data are gathered and correlations between predictors and response are investigated.



An example of an experimental study is the famous Hawthorne studies, which attempted to test the changes to the working environment at the Hawthorne plant of the Western Electric Company. The researchers were interested in determining whether increased illumination would increase the productivity of the assembly line workers. The researchers first measured the productivity in the plant, then modified the illumination in an area of the plant and checked if the changes in illumination affected the productivity. It turned out that the productivity indeed improved (under the experimental conditions). (See Hawthorne effect.) However, the study is heavily criticized today for errors in experimental procedures, specifically for the lack of a control group and blindedness.



An example of an observational study is a study which explores the correlation between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then performs statistical analysis. In this case, the researchers would collect observations of both smokers and non-smokers, perhaps through a case-control study, and then look for the number of cases of lung cancer in each group.



The basic steps of an experiment are;



Planning the research, including determining information sources, research subject selection, and ethical considerations for the proposed research and method.

Design of experiments, concentrating on the system model and the interaction of independent and dependent variables.

Summarizing a collection of observations to feature their commonality by suppressing details. (Descriptive statistics)

Reaching consensus about what the observations tell about the world being observed. (Statistical inference)

Documenting / presenting the results of the study.



[edit] Levels of measurement

See: Stanley Stevens' "Scales of measurement" (1946): nominal, ordinal, interval, ratio

There are four types of measurements or levels of measurement or measurem


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...