Given that : f(x) = ax^2+bx+c, and points A (p-q,q), C(p,-2q), & D(p+q, q).
point A(p-q, q), f(x) = q = a(p-q)^2 +b(p-q) +c ........................................ [1]
point B(p-q, q), f(x) = -2q = ap^2 +bp +c .......................................... [2]
point C(p-q, q), f(x) = q = a(p+q)^2 +b(p+q) +c ...................................... [3]
Subtract [1] from [3], a[(p+q)^2 -(p-q)^2] +b[p+q-p+q] = 0,
OR,
4pqa + 2qb = 0, ==> b = -2ap ........................................................ [4]
Adding [1] & [3], 2q = a[(p+q)^2+(p-q)^2] +b[p+q + p-q] +2c
OR,
a(p^2+q^2) + bp + c = 2q ............................................................... [5]
Adding [2] & [5], a(p^2+p^2+q^2) +b(p+p) +2c = 0,
OR,
a(2p^2+q^2) + 2bp +2c = 0 ....................................................... [6]
From [4] & [6], a(2p^2+q^2) +2p(-2ap) +2c = 0,
OR,
a[2p^2+q^2 -4p^2] +2c = 0, ===> c = -a[q^2-2p^2]/2 ............. [7]
From [2], [4] & [7], ap^2 +p(-2ap) -a(q^2-2p^2)/2 = -2q,
OR,
a[p^2-2p^2-q^2/2+p^2] = -2q, ==> -aq^2/2 = -2q,
Thus,
a = 4 / q >=================================< ANSWER,
b = -2p*(4/q) = -8p/q >==========================< ANSWER
AND
c = (-4/q)[q^2-2p^2]/2 = 2(2p^2-q^2)/q >=============< ANSWER