Question:
What were the uses of geometry in the past? How has geometry developed as the years followed?
1970-01-01 00:00:00 UTC
What were the uses of geometry in the past? How has geometry developed as the years followed?
Five answers:
santosh_musicman
2007-05-21 04:10:08 UTC
Geometry (Greek γεωμετρία; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of practical knowledge concerning lengths, areas, and volumes, in the third century B.C. geometry was put into an axiomatic form by Euclid, whose treatment set a standard for many centuries to follow. Astronomy served as an important source of geometric problems during the next one and a half millenia.



Introduction of coordinates by Descartes and the concurrent development of algebra marked a new stage for geometry, since geometric figures, such as plane curves, could now be represented analytically. This played key role in the emergence of calculus in the seventeenth century.



The theory of perspective showed that there is more to geometry than just the metric properties of figures. The subject of geometry was further enriched by the study of intrinsic structure of geometric objects that originated with Euler and Gauss and led to creation of topology and differential geometry.



Since the nineteenth century discovery of non-Euclidean geometry, the idea of space has undergone a spectacular transformation. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they only approximately resemble at small scales. These spaces may be endowed with additional structure, allowing one to speak about length. Modern geometry has multiple strong bonds with physics. Thus, the language of Riemannian geometry proved to be crucial in general relativity. One of the newest physical theories, string theory, is also very geometric in flavour.



The visual nature of geometry makes it initially more accessible than other parts of mathematics, such as algebra or number theory. However, the geometric language is also used in contexts that are far removed from its traditional provenance, especially in algebraic geometry.



History: The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, Egypt and the Indus Valley from around 3000 BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles, areas, and volumes, which were developed to meet some practical need in surveying, construction, astronomy, and various crafts. The earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets, and the Indian Shulba Sutras.



Euclid's The Elements of Geometry (c. 300 BCE), was one of the most important early texts on geometry, in which he presented geometry in an ideal axiomatic form, which came to be known as Euclidean geometry. The treatise is not a compendium of all that the Hellenistic mathematicians knew at the time about geometry; Euclid himself wrote eight more advanced books on geometry. We know from other references that Euclid’s was not the first elementary geometry textbook, but the others fell into disuse and were lost.



In the Middle Ages, Muslim mathematicians contributed to the development of geometry, especially algebraic geometry and geometric algebra. Al-Mahani (b. 853) conceived the idea of reducing geometrical problems such as duplicating the cube to problems in algebra. Thābit ibn Qurra (known as Thebit in Latin) (836-901) dealt with arithmetical operations applied to ratios of geometrical quantities, and contributed to the development of analytic geometry. Omar Khayyám (1048-1131) found geometric solutions to cubic equations, and his extensive studies of the parallel postulate contributed to the development of Non-Euclidian geometry.



In the early 17th century, there were two important developments in geometry. The first and most important was the creation of analytic geometry, or geometry with coordinates and equations, by René Descartes (1596–1650) and Pierre de Fermat (1601–1665). This was a necessary precursor to the development of calculus and a precise quantitative science of physics. The second geometric development of this period was the systematic study of projective geometry by Girard Desargues (1591–1661). Projective geometry is the study of geometry without measurement, just the study of how points align with each other.



Geometry is still feeling the effects of two developments from the nineteenth century. These were the discovery of non-Euclidean geometry by the Russian mathematician Nikolai Ivanovich Lobachevsky, and the formulation of symmetry as the central consideration in the Erlangen Programme of Felix Klein. Two of the master geometers of the time were Bernhard Riemann, working primarily with tools from mathematical analysis, and introducing the Riemann surface, and Henri Poincaré, the founder of algebraic topology and the geometric theory of dynamical systems.



As a consequence of these major changes in the conception of geometry, the concept of 'space' became something rich and varied, and the natural background for theories as different as complex analysis and classical mechanics. The traditional type of geometry was recognised as that of homogeneous spaces, those spaces which have a sufficient supply of symmetry, so that from point to point they look just the same.



Development :



Contemporary geometers



Some of the representative leading figures in modern geometry are Michael Atiyah, Mikhail Gromov, and William Thurston. The common feature in their work is the use of smooth manifolds as the basic idea of space; they otherwise have rather different directions and interests. Geometry now is, in large part, the study of structures on manifolds, that have a geometric meaning in the sense of the principle of covariance that lies at the root of general relativity theory, in theoretical physics. (See Category:Structures on manifolds for a survey.)



Much of this theory relates to the theory of continuous symmetry, or in other words Lie groups. From the foundational point of view, on manifolds and their geometrical structures, important is the concept of pseudogroup, defined formally by Shiing-shen Chern in pursuing ideas introduced by Élie Cartan. A pseudogroup can play the role of a Lie group of infinite dimension.



Dimension



Where the traditional geometry allowed dimensions 1 (a line), 2 (a plane) and 3 (our ambient world conceived of as three-dimensional space), mathematicians have used higher dimensions for nearly two centuries. Dimension has gone through stages of being any natural number n, possibly infinite with the introduction of Hilbert space, and any positive real number in fractal geometry. Dimension theory is a technical area, initially within general topology, that discusses definitions; in common with most mathematical ideas, dimension is now defined rather than an intuition. Connected topological manifolds have a well-defined dimension; this is a theorem (invariance of domain) rather than anything a priori.



The issue of dimension still matters to geometry, in the absence of complete answers to classic questions. Dimensions 3 of space and 4 of space-time are special cases in geometric topology. Dimension 10 or 11 is a key number in string theory. Exactly why is something to which research may bring a satisfactory geometric answer.



Contemporary Euclidean geometry



The study of traditional Euclidean geometry is by no means dead. It is now typically presented as the geometry of Euclidean spaces of any dimension, and of the Euclidean group of rigid motions. The fundamental formulae of geometry, such as the Pythagorean theorem, can be presented in this way for a general inner product space.



Euclidean geometry has become closely connected with computational geometry, computer graphics, convex geometry, discrete geometry, and some areas of combinatorics. Momentum was given to further work on Euclidean geometry and the Euclidean groups by crystallography and the work of H. S. M. Coxeter, and can be seen in theories of Coxeter groups and polytopes. Geometric group theory is an expanding area of the theory of more general discrete groups, drawing on geometric models and algebraic techniques.



Algebraic geometry



The field of algebraic geometry is the modern incarnation of the Cartesian geometry of co-ordinates. After a turbulent period of axiomatization, its foundations are in the twenty-first century on a stable basis. Either one studies the 'classical' case where the spaces are complex manifolds that can be described by algebraic equations; or the scheme theory provides a technically sophisticated theory based on general commutative rings.



The geometric style which was traditionally called the Italian school is now known as birational geometry. It has made progress in the fields of threefolds, singularity theory and moduli spaces, as well as recovering and correcting the bulk of the older results. Objects from algebraic geometry are now commonly applied in string theory, as well as diophantine geometry.



Methods of algebraic geometry rely heavily on sheaf theory and other parts of homological algebra. The Hodge conjecture is an open problem that has gradually taken its place as one of the major questions for mathematicians. For practical applications, Gröbner basis theory and real algebraic geometry are major subfields.



Differential geometry



Differential geometry, which in simple terms is the geometry of curvature, has been of increasing importance to mathematical physics since the suggestion that space is not flat space. Contemporary differential geometry is intrinsic, meaning that space is a manifold and structure is given by a Riemannian metric, or analogue, locally determining a geometry that is variable from point to point.



This approach contrasts with the extrinsic point of view, where curvature means the way a space bends within a larger space. The idea of 'larger' spaces is discarded, and instead manifolds carry vector bundles. Fundamental to this approach is the connection between curvature and characteristic classes, as exemplified by the generalized Gauss-Bonnet theorem.



Topology and geometry



The field of topology, which saw massive development in the 20th century, is in a technical sense a type of transformation geometry, in which transformations are homeomorphisms. This has often been expressed in the form of the dictum 'topology is rubber-sheet geometry'. Contemporary geometric topology and differential topology, and particular subfields such as Morse theory, would be counted by most mathematicians as part of geometry. Algebraic topology and general topology have gone their own ways.
2017-01-13 09:21:08 UTC
Uses Of Geometry
Radical Vampire
2007-05-21 04:12:49 UTC
In all civilizations, the geometry has been used along in every thing. Especially with the Pharaohs of Egypt.



In Egypt:-



Do you know sakkarah pyramid? It is so amazing, as the king of that pyramid ,at his birthday, the sun rays evey year pass from the window of the pyramid.How amazing!!!!!!!! You have to know that alot of things like that are present in egypt.
2007-05-21 04:09:56 UTC
There are written many books in many volumes about the history of geometry. So...

But try this website:

http://www.geometryalgorithms.com/history.htm

it gives a short survey of the field (like many other sites do

try a "google" with "history of geometry").
indranath
2007-05-21 04:14:13 UTC
Let us start with the meaning of geometry in popular languages. Geometry is nothing but the pure mathematics of points, lines, curves and surfaces.



Geometry was thoroughly organized in about 300 BC, when the Greek mathematician Euclid gathered what was known at the time, added original work of his own, and arranged 465 propositions into 13 books, called 'Elements'. The books covered not only plane and solid geometry but also much of what is now known as algebra, trigonometry, and advanced arithmetic.



Through the ages, the propositions have been rearranged, and many of the proofs are different, but the basic idea presented in the 'Elements' has not changed. In the work facts are not just cataloged but are developed in a fashionable way.



Even in 300 BC, geometry was recognized to be not just for mathematicians. Anyone can benefit from the basic learning of geometry, which is how to follow lines of reasoning, how to say precisely what is intended, and especially how to prove basic concepts by following these lines of reasoning. Taking a course in geometry is beneficial for all students, who will find that learning to reason and prove convincingly is necessary for every profession. It is true that not everyone must prove things, but everyone is exposed to proof. Politicians, advertisers, and many other people try to offer convincing arguments. Anyone who cannot tell a good proof from a bad one may easily be persuaded in the wrong direction. Geometry provides a simplified universe, where points and lines obey believable rules and where conclusions are easily verified. By first studying how to reason in this simplified universe, people can eventually, through practice and experience, learn how to reason in a complicated world.



Geometry in ancient times was recognized as part of everyone's education. Early Greek philosophers asked that no one come to their schools that had not learned the Elements' of Euclid. There were, and still are, many who resisted this kind of education.



Ancient knowledge of the sciences was often wrong and wholly unsatisfactory by modern standards. However not all of the knowledge of the more learned peoples of the past was false. In fact without people like Euclid or Plato we may not have been as advanced in this age as we are. Mathematics is an adventure in ideas. Within the history of mathematics, one finds the ideas and lives of some of the most brilliant people in the history of mankind’s’ populace upon Earth. First man created a number system of base 10. Certainly, it is not just coincidence that man just so happens to have ten fingers or ten toes, for when our primitive ancestors first discovered the need to count they definitely would have used their fingers to help them along just like a child today. When primitive man learned to count up to ten he somehow differentiated him from other animals. As an object of a higher thinking, man invented ten number-sounds. The needs and possessions of primitive man were not many. When the need to count over ten aroused, he simply combined the number-sounds related with his fingers. So, if he wished to define one more than ten, he simply said one-ten. Thus our word eleven is simply a modern form of the Teutonic ein-lifon. Since those first sounds were created, man has only added five new basic number-sounds to the ten primary ones. They are “hundred,” “thousand,” “million,” “billion” (a thousand millions in America, a million millions in England), “trillion” (a million millions in America, a million-million millions in England). Because primitive man invented the same number of number-sounds as he had fingers, our number system is a decimal one, or a scale based on ten, consisting of limitless repetitions of the first ten number sounds. Undoubtedly, if nature had given man thirteen fingers instead of ten, our number system would be much changed. For instance, with a base thirteen number system we would call fifteen, two-thirteen’s. While some intelligent and well-schooled scholars might argue whether or not base ten is the most adequate number system, base ten is the irreversible favorite among all the nations. Of course, primitive man most certainly did not realize the concept of the number system he had just created. Man simply used the number-sounds loosely as adjectives. So an amount of ten fish was ten fish, whereas ten is an adjective describing the noun fish. Soon the need to keep tally on one’s counting raised. The simple solution was to make a vertical mark. Thus, on many caves we see a number of marks that the resident used to keep track of his possessions such a fish or knives. This way of record keeping is still taught today in our schools under the name of tally marks.



The earliest continuous record of mathematical activity is from the second millennium BC when one of the few wonders of the world was created mathematics was necessary. Even the earliest Egyptian pyramid proved that the makers had a fundamental knowledge of geometry and surveying skills. The approximate time period was 2900 BC The first proof of mathematical activity in written form came about one thousand years later. The best-known sources of ancient Egyptian mathematics in written format are the Rhind Papyrus and the Moscow Papyrus. The sources provide undeniable proof that the later Egyptians had intermediate knowledge of the following mathematical problems, applications to surveying, salary distribution, calculation of area of simple geometric figures' surfaces and volumes, simple solutions for first and second degree equations. Egyptians used a base ten number system most likely because of biologic reasons (ten fingers as explained above). They used the Natural Numbers (1,2,3,4,5,6, etc.) also known as the counting numbers. The word digit, which is Latin for finger, is also another name for numbers that explains the influence of fingers upon numbers once again. The Egyptians produced a more complex system then the tally system for recording amounts. Hieroglyphs stood for groups of tens, hundreds, and thousands. The higher powers of ten made it much easier for the Egyptians to calculate into numbers as large as one million. Our number system which is both decimal and positional (52 is not the same value as 25) differed from the Egyptian, which was additive, but not positional. The Egyptians also knew more of pi then its mere existence. They found pi to equal C/D or 4(8/9)ª whereas a equals 2. The method for ancient peoples arriving at this numerical equation was fairly easy. They simply counted how many times a string that fit the circumference of the circle fitted into the diameter, thus the rough approximation of 3. The biblical value of pi can be found in the Old Testament (I Kings vii.23 and 2 Chronicles iv.2)in the following verse “Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about.” The molten sea, as we are told is round, and measures thirty cubits round about (in circumference) and ten cubits from brim to brim (in diameter). Thus the biblical value for pi is 30/10 = 3.



Now we travel to ancient Mesopotamia, home of the early Babylonians. Unlike the Egyptians, the Babylonians developed a flexible technique for dealing with fractions. The Babylonians also succeeded in developing more sophisticated base ten arithmetic that were positional and they also stored mathematical records on clay tablets. Despite all this, the greatest and most remarkable feature of Babylonian Mathematics was their complex usage of a sexagesimal place-valued system in addition a decimal system much like our own modern one. The Babylonians counted in both groups of ten and sixty. Because of the flexibility of a sexagismal system with fractions, the Babylonians were strong in both algebra and number theory. Remaining clay tablets from the Babylonian records show solutions to first, second, and third degree equations. Also the calculations of compound interest, squares and square roots were apparent in the tablets. The sexagismal system of the Babylonians is still commonly in usage today. Our system for telling time revolves around a sexagesimal system. The same system for telling time that is used today was also used by the Babylonians. Also, we use base sixty with circles (360 degrees to a circle). Usage of the sexagesimal system was principally for economic reasons. Being, the main units of weight and money were mina,(60 shekels) and talent (60 mina). This sexagesimal arithmetic was used in commerce and in astronomy. The Babylonians used many of the more common cases of the Pythagorean Theorem for right triangles. They also used accurate formulas for solving the areas, volumes and other measurements of the easier geometric shapes as well as trapezoids. The Babylonian value for pi was a very rounded off three. Because of this crude approximation of pi, the Babylonians achieved only rough estimates of the areas of circles and other spherical, geometric objects.

The real birth of modern math was in the era of Greece and Rome. Not only did the philosophers ask the question “how” of previous cultures, but they also asked the modern question of “why.” The goal of this new thinking was to discover and understand the reason for mans’ existence in the universe and also to find his place. The philosophers of Greece used mathematical formulas to prove propositions of mathematical properties. Some of who, like Aristotle, engaged in the theoretical study of logic and the analysis of correct reasoning. Up until this point in time, no previous culture had dealt with the negated abstract side of mathematics, of with the concept of the mathematical proof. The Greeks were interested not only in the application of mathematics but also in its philosophical significance, which was especially appreciated by Plato (429-348 BC). Plato was of the richer class of gentlemen of leisure. He, like others of his class, looked down upon the work of slaves and crafts worker. He sought relief, for the tiresome worries of life, in the study of philosophy and personal ethics. Within the walls of Plato’s academy at least three great mathematicians were taught, Theaetetus, known for the theory of irrational, Eodoxus, the theory of proportions, and also Archytas (I couldn’t find what made him great, but three books mentioned him so I will too). Indeed the motto of Plato’s academy “Let no one ignorant of geometry enter within these walls” was fitting for the scene of the great minds who gathered here. Another great mathematician of the Greeks was Pythagoras who provided one of the first mathematical proofs and discovered incommensurable magnitudes, or irrational numbers. The Pythagorean theorem relates the sides of a right triangle with their corresponding squares. The discovery of irrational magnitudes had another consequence for the Greeks since the length of diagonals of squares could not be expressed by rational numbers in the form of A over B, the Greek number system was inadequate for describing them. As, you might have realized, without the great minds of the past our mathematical experiences would be quite different from the way they are today.





Ancient Geometry (30000 BC - 500 BC)

Babylon (4000 BC - 500 BC)

Egypt (5000 BC - 500 BC)

The geometry of Babylon (in Mesopotamia) and Egypt was mostly experimentally derived rules used by the engineers of those civilizations. They knew how to compute areas, and even knew the "Pythagorian Theorem" 1000 years before the Greeks (see: Pythagoras's theorem in Babylonian mathematics). But there is no evidence that they logically deduced geometric facts from basic principles. Nevertheless, they established the framework that inspired Greek geometry. A detailed analysis of Egyptian mathematics is given in the book: Mathematics in the Time of the Pharaohs. One of the few surviving documents was written by:



Ahmes (1680-1620 BC)

wrote the Rhind Papyrus (aka the Ahmes Papyrus). In it, he claims to not be the author, but merely a scribe of material from an earlier work of about 2000 BC. It contains rules for division, and has 87 problems including the solution of equations, progressions, volumes of granaries, etc.





India (1500 BC - 200 BC)

Everything that we know about ancient Indian (Vedic) mathematics is contained in:

The Sulbasutras

which are appendices to the Vedas giving rules for constructing sacrificial altars. To please the gods, an altar's measurements had to conform to very precise formula, and mathematical accuracy was very important. It is not historically clear whether this mathematics was developed by the Indian Vedic culture, or whether it was borrowed from the Babylonians. Like the Babylonians, results in the Sulbasutras are stated in terms of ropes; and "sutra" eventually came to mean a rope for measuring an altar. Ultimately, the Sulbasutras are simply construction manuals for some basic geometric shapes. It is noteworthy, though, that all the Sulbasutras contain a method to square the circle (one of the infamous Greek problems) as well as the converse problem of finding a circle equal in area to a given square. The main Sulbasutras, named after their authors, are:

The Baudhayana (800 BC)

Baudhayana was the author of the earliest known Sulbasutra. Although he was a priest interested in constructing altars, and not a mathematician, his Sulbasutra contains geometric constructions for solving linear and quadratic equations, plus approximations of p (to construct circles) and Ö2 = 577 / 408 (which is accurate to 5 decimal places). It also gives the special case of the Pythagorian theorem for the diagonal of a square.



The Manava (750 BC)

contains approximate constructions of circles from rectangles, and squares from circles, which give approximations of p.



The Apastamba (600 BC)

considers the problems of squaring the circle, and of dividing a segment into 7 equal parts. It also gives an accurate approximation of Ö2 .



The Katyayana (200 BC)

gives the general case of the Pythagorian theorem for the diagonal of any rectangle.


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...