α and ß are the roots of the equation : 6 cosΘ + 8 sinΘ = 9
=> 6 cosα + 8 sinα = 9 ------------- (1) and
.....6 cos ß + 8 sin ß = 9 ------------- (2)
Subtracting (2) from (1), we have :
6(cosα - cos ß) + 8(sin α - sin ß) = 0
=> 4(sinα - sin ß) = 3(cos ß - cos α)
=> (sin α - sin ß)/(cos ß - cos α) = 3/4
=> [2 cos{(α + ß)/2} sin {(α - ß)/2}] / [2 sin {(α + ß)/2} sin {(α - ß)/2}] = 3/4
=> cot {(α + ß)/2} = 3/4
=> cot²{(α + ß)/2} = 9/16
=> 1 + cot²{(α + ß)/2} = 1 + 9/16 = 25/16
=> cosec²{(α + ß)/2} = 25/16
=> sin² {(α + ß)/2} = 16/25
=> sin {(α + ß)/2} = ± 4/5 --------- (3)
=> 1 - sin²{(α + ß)/2} = 1 - 16/25 = 9/25
=> cos²{(α + ß)/2} = 9/25
=> cos {(α + ß)/2} = ± 3/5 ---------- (4)
=> sin (α + ß) = 2 sin {(α + ß)/2} cos {(α + ß)/2} = ± 2(4/5)*(3/5) = ± 24/25