m dv/dt = mg - kv ..................... mass * acceleration = net force
dv/dt + k/m v = g
d/dt [ e^(kt/m) v ] = g e^(kt/m)
e^(kt/m) v = gm/k e^(kt/m) + C₁
v = C₁ e^(-kt/m) + gm/k
V₀ = C₁ + gm/k ....... ⇒ C₁ = V₀ - gm/k
v = (V₀ - gm/k) e^(-kt/m) + gm/k
v(20) = (0+32.174(160)/0.5))*e^(-0.5*20/160) - 32.174*160/0.5
Answer: v(20) ≈ 623.8 ft/s
x = ∫ v dt
= (V₀ - gm/k) ∫ e^(-kt/m) dt + gm/k ∫ dt
= (g(m/k)² - V₀ m/k) e^(-kt/m) + gm/k t + C₁
X₀ = (g(m/k)² - V₀ m/k) + C₁ .... ⇒ C₁ = X₀ - (g(m/k)² - V₀ m/k)
x = (g(m/k)² - V₀ m/k) (e^(-kt/m) - 1) + gm/k t + X₀
x(20) = (32.174(160/0.5)²)(e^(-0.5(20)/160) - 1) + 32.174(160)(20)/0.5
Answer: x(20) = 6302.8 ft
lim (t → ∞) (V₀ - gm/k) e^(-kt/m) + gm/k
= gm/k
= 32.174(160)/10
= 514.8 ft/s
Answer: terminal velocity = 514.8 ft/s
x = (g(m/k)² - V₀ m/k) (e^(-kt/m) - 1) + gm/k t + X₀
15000 = (32.174(160/10)² - (623.8)(160)/10) (e^(-10t/160) - 1) + 32.174(160)/10 t + 6302.8
t ≈ 14.85
⇒ reach the ground at 20 + 14.85 = 34.85 s
Answer: ≈ 34.85 s