Question:
What is the exact value of pi?
ZxssxZ
2006-08-12 23:03:51 UTC
Write if you can may be upto 6 or 7 decimal places
28 answers:
pragjnesh_reddy
2006-08-12 23:12:57 UTC
Hi:



To answer your question you need to know what pi is : It is the ratio of a circle's circumference to it's diameter. it a constant number that never changes no matter how big or small the diameter of the circle you make. Start by cut some paper circles of varying diameters say 1 inch , 2 inch and 3 inch take a ruler and mark a spot on the edge of the paper circle and position that spot on the zero mark on the ruler. Then carefully roll the paper circle along the ruler and see where you end up as that point return to the bottom of the circle . This is the circumference now divide that number by the circle diameter, you should get a close value for pi. of about 3.1 or 3.2



Now to answer the second part of your question.

Back about three thousand years ago the ancient Egyptians estimated Pi to be about 3 units (you have to remember that their Mathematics were quite primitive and they had no algebra to help them at this time). Later the ancient Greeks developed and used the area of triangles filling a circle method to estimate pi to be between 22/7 and 3 10/71



{pi= sin ( (360/N)/2)*N



pi = tan(360/N)/2)*N { N= the number of triangles try the numbers between 100,000 to 1*10^50) for good results}



This is the modern day formula for the filling the circle method used by the Greek }



around 240 B.C. However this was good enough for building things and such, but is was not good enough for mathematicans however. So a quest was started to find the true value for pi and various mehods were used to get a better and better estimate for the value of pi. In about the 15th and 16 th centry A.D. Various discovery where made about Pi:



1) Pi is irrational { Meaning it does not repeat itself ever ; like 1/3} and it's transcendental { Meaning that powers of and combination of powers of pi will not give finite whole numbers } So all formulae for computing pi will be infinitely long.



2) with the devolpment of Algbera and Calculus, certain series were found to give the approximate value of pi



Pi= sqr ( 6*(1 + 1/(2^2)+ 1/(3^2)+ 1/ (4^2) + 1/(5^2).....) { sqr means Square root}



or



Pi = 4*( 1- (1/3)+(1/5)-(1/7)+(1/9)- (1/11)......)



Those series take a long time to come to the value of Pi that we know Pi to be today. Which bring us to our era, when electronic computers where built, and as soon as they became avialable. Mathematican were able to confirm those series to be the appoximate value of Pi , which are still in use today. it has been calulated the about 15 billion decimal places and is so well known that it is use to gauged the speed and power of all supercomputers and computers that made today and in the future to come. and it being surpassed in the number of decimal places to be counted in. and it pop up in some interesting places.



Here Pi to a few hundred decimal places I got off the Internet:



3.



1415926535 8979323846 2643383279 5028841971 6939937510

5820974944 5923078164 0628620899 8628034825 3421170679

8214808651 3282306647 0938446095 5058223172 5359408128

4811174502 8410270193 8521105559 6446229489 5493038196

4428810975 6659334461 2847564823 3786783165 2712019091

4564856692 3460348610 4543266482 1339360726 0249141273

7245870066 0631558817 4881520920 9628292540 9171536436

7892590360 0113305305 4882046652 1384146951 9415116094

3305727036 5759591953 0921861173 8193261179 3105118548

0744623799 6274956735 1885752724 8912279381 8301194912

9833673362 4406566430 8602139494 6395224737 1907021798

6094370277 0539217176 2931767523 8467481846 7669405132

0005681271 4526356082 7785771342 7577896091 7363717872

1468440901 2249534301 4654958537 1050792279 6892589235

4201995611 2129021960 8640344181 5981362977 4771309960

5187072113 4999999837 2978049951 0597317328 1609631859

5024459455 3469083026 4252230825 3344685035 2619311881

7101000313 7838752886 5875332083 8142061717 7669147303

5982534904 2875546873 1159562863 8823537875 9375195778

1857780532 1712268066 1300192787 6611195909 2164201989



3809525720 1065485863 2788659361 5338182796 8230301952

0353018529 6899577362 2599413891 2497217752 8347913151

5574857242 4541506959 5082953311 6861727855 8890750983

8175463746 4939319255 0604009277 0167113900 9848824012

8583616035 6370766010 4710181942 9555961989 4676783744

9448255379 7747268471 0404753464 6208046684 2590694912

9331367702 8989152104 7521620569 6602405803 8150193511

2533824300 3558764024 7496473263 9141992726 0426992279

6782354781 6360093417 2164121992 4586315030 2861829745

5570674983 8505494588 5869269956 9092721079 7509302955

3211653449 8720275596 0236480665 4991198818 3479775356

6369807426 5425278625 5181841757 4672890977 7727938000

8164706001 6145249192 1732172147 7235014144 1973568548

1613611573 5255213347 5741849468 4385233239 0739414333

4547762416 8625189835 6948556209 9219222184 2725502542

5688767179 0494601653 4668049886 2723279178 6085784383

8279679766 8145410095 3883786360 9506800642 2512520511

7392984896 0841284886 2694560424 1965285022 2106611863

0674427862 2039194945 0471237137 8696095636 4371917287

4677646575 7396241389 0865832645 9958133904 7802759009



9465764078 9512694683 9835259570 9825822620 5224894077

2671947826 8482601476 9909026401 3639443745 5305068203

4962524517 4939965143 1429809190 6592509372 2169646151

5709858387 4105978859 5977297549 8930161753 9284681382

6868386894 2774155991 8559252459 5395943104 9972524680

8459872736 4469584865 3836736222 6260991246 0805124388

4390451244 1365497627 8079771569 1435997700 1296160894

4169486855 5848406353 4220722258 2848864815 8456028506

0168427394 5226746767 8895252138 5225499546 6672782398

6456596116 3548862305 7745649803 5593634568 1743241125

1507606947 9451096596 0940252288 7971089314 5669136867

2287489405 6010150330 8617928680 9208747609 1782493858

9009714909 6759852613 6554978189 3129784821 6829989487

2265880485 7564014270 4775551323 7964145152 3746234364

5428584447 9526586782 1051141354 7357395231 1342716610

2135969536 2314429524 8493718711 0145765403 5902799344

0374200731 0578539062 1983874478 0847848968 3321445713

8687519435 0643021845 3191048481 0053706146 8067491927

8191197939 9520614196 6342875444 0643745123 7181921799

9839101591 9561814675 1426912397 4894090718 6494231961



5679452080 9514655022 5231603881 9301420937 6213785595

6638937787 0830390697 9207734672 2182562599 6615014215

0306803844 7734549202 6054146659 2520149744 2850732518

6660021324 3408819071 0486331734 6496514539 0579626856

1005508106 6587969981 6357473638 4052571459 1028970641

4011097120 6280439039 7595156771 5770042033 7869936007

2305587631 7635942187 3125147120 5329281918 2618612586

7321579198 4148488291 6447060957 5270695722 0917567116

7229109816 9091528017 3506712748 5832228718 3520935396

5725121083 5791513698 8209144421 0067510334 6711031412

6711136990 8658516398 3150197016 5151168517 1437657618

3515565088 4909989859 9823873455 2833163550 7647918535

8932261854 8963213293 3089857064 2046752590 7091548141

6549859461 6371802709 8199430992 4488957571 2828905923

2332609729 9712084433 5732654893 8239119325 9746366730

5836041428 1388303203 8249037589 8524374417 0291327656

1809377344 4030707469 2112019130 2033038019 7621101100

4492932151 6084244485 9637669838 9522868478 3123552658

2131449576 8572624334 4189303968 6426243410 7732269780

2807318915 4411010446 8232527162 0105265227 2111660396



6655730925 4711055785 3763466820 6531098965 2691862056

4769312570 5863566201 8558100729 3606598764 8611791045

3348850346 1136576867 5324944166 8039626579 7877185560

8455296541 2665408530 6143444318 5867697514 5661406800

7002378776 5913440171 2749470420 5622305389 9456131407

1127000407 8547332699 3908145466 4645880797 2708266830

6343285878 5698305235 8089330657 5740679545 7163775254

2021149557 6158140025 0126228594 1302164715 5097925923

0990796547 3761255176 5675135751 7829666454 7791745011

2996148903 0463994713 2962107340 4375189573 5961458901

9389713111 7904297828 5647503203 1986915140 2870808599

0480109412 1472213179 4764777262 2414254854 5403321571

8530614228 8137585043 0633217518 2979866223 7172159160

7716692547 4873898665 4949450114 6540628433 6639379003

9769265672 1463853067 3609657120 9180763832 7166416274

8888007869 2560290228 4721040317 2118608204 1900042296

6171196377 9213375751 1495950156 6049631862 9472654736

4252308177 0367515906 7350235072 8354056704 0386743513

6222247715 8915049530 9844489333 0963408780 7693259939

7805419341 4473774418 4263129860 8099888687 4132604721



5695162396 5864573021 6315981931 9516735381 2974167729

4786724229 2465436680 0980676928 2382806899 6400482435

4037014163 1496589794 0924323789 6907069779 4223625082

2168895738 3798623001 5937764716 5122893578 6015881617

5578297352 3344604281 5126272037 3431465319 7777416031

9906655418 7639792933 4419521541 3418994854 4473456738

3162499341 9131814809 2777710386 3877343177 2075456545

3220777092 1201905166 0962804909 2636019759 8828161332

3166636528 6193266863 3606273567 6303544776 2803504507

7723554710 5859548702 7908143562 4014517180 6246436267

9456127531 8134078330 3362542327 8394497538 2437205835

3114771199 2606381334 6776879695 9703098339 1307710987

0408591337 4641442822 7726346594 7047458784 7787201927

7152807317 6790770715 7213444730 6057007334 9243693113

8350493163 1284042512 1925651798 0694113528 0131470130

4781643788 5185290928 5452011658 3934196562 1349143415

9562586586 5570552690 4965209858 0338507224 2648293972

8584783163 0577775606 8887644624 8246857926 0395352773

4803048029 0058760758 2510474709 1643961362 6760449256

2742042083 2085661190 6254543372 1315359584 5068772460



2901618766 7952406163 4252257719 5429162991 9306455377

9914037340 4328752628 8896399587 9475729174 6426357455

2540790914 5135711136 9410911939 3251910760 2082520261

8798531887 7058429725 9167781314 9699009019 2116971737

2784768472 6860849003 3770242429 1651300500 5168323364

3503895170 2989392233 4517220138 1280696501 1784408745

1960121228 5993716231 3017114448 4640903890 6449544400

6198690754 8516026327 5052983491 8740786680 8818338510

2283345085 0486082503 9302133219 7155184306 3545500766

8282949304 1377655279 3975175461 3953984683 3936383047

4611996653 8581538420 5685338621 8672523340 2830871123

2827892125 0771262946 3229563989 8989358211 6745627010

2183564622 0134967151 8819097303 8119800497 3407239610

3685406643 1939509790 1906996395 5245300545 0580685501

9567302292 1913933918 5680344903 9820595510 0226353536

1920419947 4553859381 0234395544 9597783779 0237421617

2711172364 3435439478 2218185286 2408514006 6604433258

8856986705 4315470696 5747458550 3323233421 0730154594

0516553790 6866273337 9958511562 5784322988 2737231989

8757141595 7811196358 3300594087 3068121602 8764962867



4460477464 9159950549 7374256269 0104903778 1986835938

1465741268 0492564879 8556145372 3478673303 9046883834

3634655379 4986419270 5638729317 4872332083 7601123029

9113679386 2708943879 9362016295 1541337142 4892830722

0126901475 4668476535 7616477379 4675200490 7571555278

1965362132 3926406160 1363581559 0742202020 3187277605

2772190055 6148425551 8792530343 5139844253 2234157623

3610642506 3904975008 6562710953 5919465897 5141310348

2276930624 7435363256 9160781547 8181152843 6679570611

0861533150 4452127473 9245449454 2368288606 1340841486

3776700961 2071512491 4043027253 8607648236 3414334623

5189757664 5216413767 9690314950 1910857598 4423919862

9164219399 4907236234 6468441173 9403265918 4044378051

3338945257 4239950829 6591228508 5558215725 0310712570

1266830240 2929525220 1187267675 6220415420 5161841634

8475651699 9811614101 0029960783 8690929160 3028840026

9104140792 8862150784 2451670908 7000699282 1206604183

7180653556 7252532567 5328612910 4248776182 5829765157

9598470356 2226293486 0034158722 9805349896 5022629174

8788202734 2092222453 3985626476 6914905562 8425039127



5771028402 7998066365 8254889264 8802545661 0172967026

6407655904 2909945681 5065265305 3718294127 0336931378

5178609040 7086671149 6558343434 7693385781 7113864558

7367812301 4587687126 6034891390 9562009939 3610310291

6161528813 8437909904 2317473363 9480457593 1493140529

7634757481 1935670911 0137751721 0080315590 2485309066

9203767192 2033229094 3346768514 2214477379 3937517034

4366199104 0337511173 5471918550 4644902636 5512816228

8244625759 1633303910 7225383742 1821408835 0865739177

1509682887 4782656995 9957449066 1758344137 5223970968

3408005355 9849175417 3818839994 4697486762 6551658276

5848358845 3142775687 9002909517 0283529716 3445621296

4043523117 6006651012 4120065975 5851276178 5838292041

9748442360 8007193045 7618932349 2292796501 9875187212

7267507981 2554709589 0455635792 1221033346 6974992356

3025494780 2490114195 2123828153 0911407907 3860251522

7429958180 7247162591 6685451333 1239480494 7079119153

2673430282 4418604142 6363954800 0448002670 4962482017

9289647669 7583183271 3142517029 6923488962 7668440323

2609275249 6035799646 9256504936 8183609003 2380929345



9588970695 3653494060 3402166544 3755890045 6328822505

4525564056 4482465151 8754711962 1844396582 5337543885

6909411303 1509526179 3780029741 2076651479 3942590298

9695946995 5657612186 5619673378 6236256125 2163208628

6922210327 4889218654 3648022967 8070576561 5144632046

9279068212 0738837781 4233562823 6089632080 6822246801

2248261177 1858963814 0918390367 3672220888 3215137556

0037279839 4004152970 0287830766 7094447456 0134556417

2543709069 7939612257 1429894671 5435784687 8861444581

2314593571 9849225284 7160504922 1242470141 2147805734

5510500801 9086996033 0276347870 8108175450 1193071412

2339086639 3833952942 5786905076 4310063835 1983438934

1596131854 3475464955 6978103829 3097164651 4384070070

7360411237 3599843452 2516105070 2705623526 6012764848

3084076118 3013052793 2054274628 6540360367 4532865105

7065874882 2569815793 6789766974 2205750596 8344086973

5020141020 6723585020 0724522563 2651341055 9240190274

2162484391 4035998953 5394590944 0704691209 1409387001

2645600162 3742880210 9276457931 0657922955 2498872758

4610126483 6999892256 9596881592 0560010165 5256375678



5667227966 1988578279 4848855834 3975187445 4551296563

4434803966 4205579829 3680435220 2770984294 2325330225

7634180703 9476994159 7915945300 6975214829 3366555661

5678736400 5366656416 5473217043 9035213295 4352916941

4599041608 7532018683 7937023488 8689479151 0716378529

0234529244 0773659495 6305100742 1087142613 4974595615

1384987137 5704710178 7957310422 9690666702 1449863746

4595280824 3694457897 7233004876 4765241339 0759204340

1963403911 4732023380 7150952220 1068256342 7471646024

3354400515 2126693249 3419673977 0415956837 5355516673

0273900749 7297363549 6453328886 9844061196 4961627734

4951827369 5588220757 3551766515 8985519098 6665393549

4810688732 0685990754 0792342402 3009259007 0173196036

2254756478 9406475483 4664776041 1463233905 6513433068

4495397907 0903023460 4614709616 9688688501 4083470405

4607429586 9913829668 2468185710 3188790652 8703665083

2431974404 7718556789 3482308943 1068287027 2280973624

8093996270 6074726455 3992539944 2808113736 9433887294

0630792615 9599546262 4629707062 5948455690 3471197299

6409089418 0595343932 5123623550 8134949004 3642785271



3831591256 8989295196 4272875739 4691427253 4366941532

3610045373 0488198551 7065941217 3524625895 4873016760

0298865925 7866285612 4966552353 3829428785 4253404830

8330701653 7228563559 1525347844 5981831341 1290019992

0598135220 5117336585 6407826484 9427644113 7639386692

4803118364 4536985891 7544264739 9882284621 8449008777

6977631279 5722672655 5625962825 4276531830 0134070922

3343657791 6012809317 9401718598 5999338492 3549564005

7099558561 1349802524 9906698423 3017350358 0440811685

5265311709 9570899427 3287092584 8789443646 0050410892

2669178352 5870785951 2983441729 5351953788 5534573742

6085902908 1765155780 3905946408 7350612322 6112009373

1080485485 2635722825 7682034160 5048466277 5045003126

2008007998 0492548534 6941469775 1649327095 0493463938

2432227188 5159740547 0214828971 1177792376 1225788734

7718819682 5462981268 6858170507 4027255026 3329044976

2778944236 2167411918 6269439650 6715157795 8675648239

9391760426 0176338704 5499017614 3641204692 1823707648

8783419689 6861181558 1587360629 3860381017 1215855272

6683008238 3404656475 8804051380 8016336388 7421637140



6435495561 8689641122 8214075330 2655100424 1048967835

2858829024 3670904887 1181909094 9453314421 8287661810

3100735477 0549815968 0772009474 6961343609 2861484941

7850171807 7930681085 4690009445 8995279424 3981392135

0558642219 6483491512 6390128038 3200109773 8680662877

9239718014 6134324457 2640097374 2570073592 1003154150

8936793008 1699805365 2027600727 7496745840 0283624053

4603726341 6554259027 6018348403 0681138185 5105979705

6640075094 2608788573 5796037324 5141467867 0368809880

6097164258 4975951380 6930944940 1515422221 9432913021

7391253835 5915031003 3303251117 4915696917 4502714943

3151558854 0392216409 7229101129 0355218157 6282328318

2342548326 1119128009 2825256190 2052630163 9114772473

3148573910 7775874425 3876117465 7867116941 4776421441

1112635835 5387136101 1023267987 7564102468 2403226483

4641766369 8066378576 8134920453 0224081972 7856471983

9630878154 3221166912 2464159117 7673225326 4335686146

1865452226 8126887268 4459684424 1610785401 6768142080

8850280054 1436131462 3082102594 1737562389 9420757136

2751674573 1891894562 8352570441 3354375857 5342698699



4725470316 5661399199 9682628247 2706413362 2217892390

3176085428 9437339356 1889165125 0424404008 9527198378

7386480584 7268954624 3882343751 7885201439 5600571048

1194988423 9060613695 7342315590 7967034614 9143447886

3604103182 3507365027 7859089757 8272731305 0488939890

0992391350 3373250855 9826558670 8924261242 9473670193

9077271307 0686917092 6462548423 2407485503 6608013604

6689511840 0936686095 4632500214 5852930950 0009071510

5823626729 3264537382 1049387249 9669933942 4685516483

2611341461 1068026744 6637334375 3407642940 2668297386

5220935701 6263846485 2851490362 9320199199 6882851718

3953669134 5222444708 0459239660 2817156551 5656661113

5982311225 0628905854 9145097157 5539002439 3153519090

2107119457 3002438801 7661503527 0862602537 8817975194

7806101371 5004489917 2100222013 3501310601 6391541589

5780371177 9277522597 8742891917 9155224171 8958536168

0594741234 1933984202 1874564925 6443462392 5319531351

0331147639 4911995072 8584306583 6193536932 9699289837

9149419394 0608572486 3968836903 2655643642 1664425760

7914710869 9843157337 4964883529 2769328220 7629472823



8153740996 1545598798 2598910937 1712621828 3025848112

3890119682 2142945766 7580718653 8065064870 2613389282

2994972574 5303328389 6381843944 7707794022 8435988341

0035838542 3897354243 9564755568 4095224844 5541392394

1000162076 9363684677 6413017819 6593799715 5746854194

6334893748 4391297423 9143365936 0410035234 3777065888

6778113949 8616478747 1407932638 5873862473 2889645643

5987746676 3847946650 4074111825 6583788784 5485814896

2961273998 4134427260 8606187245 5452360643 1537101127

4680977870 4464094758 2803487697 5894832824 1239292960

5829486191 9667091895 8089833201 2103184303 4012849511

6203534280 1441276172 8583024355 9830032042 0245120728

7253558119 5840149180 9692533950 7577840006 7465526031

4461670508 2768277222 3534191102 6341631571 4740612385

0425845988 4199076112 8725805911 3935689601 4316682831

7632356732 5417073420 8173322304 6298799280 4908514094

7903688786 8789493054 6955703072 6190095020 7643349335

9106024545 0864536289 3545686295 8531315337 1838682656

1786227363 7169757741 8302398600 6591481616 4049449650

1173213138 9574706208 8474802365 3710311508 9842799275



4426853277 9743113951 4357417221 9759799359 6852522857

4526379628 9612691572 3579866205 7340837576 6873884266

4059909935 0500081337 5432454635 9675048442 3528487470

1443545419 5762584735 6421619813 4073468541 1176688311

8654489377 6979566517 2796623267 1481033864 3913751865

9467300244 3450054499 5399742372 3287124948 3470604406

3471606325 8306498297 9551010954 1836235030 3094530973

3583446283 9476304775 6450150085 0757894954 8931393944

8992161255 2559770143 6858943585 8775263796 2559708167

7643800125 4365023714 1278346792 6101995585 2247172201

7772370041 7808419423 9487254068 0155603599 8390548985

7235467456 4239058585 0216719031 3952629445 5439131663

1345308939 0620467843 8778505423 9390524731 3620129476

9187497519 1011472315 2893267725 3391814660 7300089027

7689631148 1090220972 4520759167 2970078505 8071718638

1054967973 1001678708 5069420709 2232908070 3832634534

5203802786 0990556900 1341371823 6837099194 9516489600

7550493412 6787643674 6384902063 9640197666 8559233565

4639138363 1857456981 4719621084 1080961884 6054560390

3845534372 9141446513 4749407848 8442377217 5154334260



3066988317 6833100113 3108690421 9390310801 4378433415

1370924353 0136776310 8491351615 6422698475 0743032971

6746964066 6531527035 3254671126 6752246055 1199581831

9637637076 1799191920 3579582007 5956053023 4626775794

3936307463 0569010801 1494271410 0939136913 8107258137

8135789400 5599500183 5425118417 2136055727 5221035268

0373572652 7922417373 6057511278 8721819084 4900617801

3889710770 8229310027 9766593583 8758909395 6881485602

6322439372 6562472776 0378908144 5883785501 9702843779

3624078250 5270487581 6470324581 2908783952 3245323789

6029841669 2254896497 1560698119 2186584926 7704039564

8127810217 9913217416 3058105545 9880130048 4562997651

1212415363 7451500563 5070127815 9267142413 4210330156

6165356024 7338078430 2865525722 2753049998 8370153487

9300806260 1809623815 1613669033 4111138653 8510919367

3938352293 4588832255 0887064507 5394739520 4396807906

7086806445 0969865488 0168287434 3786126453 8158342807

5306184548 5903798217 9945996811 5441974253 6344399602

9025100158 8827216474 5006820704 1937615845 4712318346

0072629339 5505482395 5713725684 0232268213 0124767945



2264482091 0235647752 7230820810 6351889915 2692889108

4555711266 0396503439 7896278250 0161101532 3516051965

5904211844 9499077899 9200732947 6905868577 8787209829

0135295661 3978884860 5097860859 5701773129 8155314951

6814671769 5976099421 0036183559 1387778176 9845875810

4466283998 8060061622 9848616935 3373865787 7359833616

1338413385 3684211978 9389001852 9569196780 4554482858

4837011709 6721253533 8758621582 3101331038 7766827211

5726949518 1795897546 9399264219 7915523385 7662316762

7547570354 6994148929 0413018638 6119439196 2838870543

6777432242 7680913236 5449485366 7680000010 6526248547

3055861598 9991401707 6983854831 8875014293 8908995068

5453076511 6803337322 2651756622 0752695179 1442252808

1651716677 6672793035 4851542040 2381746089 2328391703

2754257508 6765511785 9395002793 3895920576 6827896776

4453184040 4185540104 3513483895 3120132637 8369283580

8271937831 2654961745 9970567450 7183320650 3455664403

4490453627 5600112501 8433560736 1222765949 2783937064

7842645676 3388188075 6561216896 0504161139 0390639601

6202215368 4941092605 3876887148 3798955999 9112099164



6464411918 5682770045 7424343402 1672276445 5893301277

8158686952 5069499364 6101756850 6016714535 4315814801

0545886056 4550133203 7586454858 4032402987 1709348091

0556211671 5468484778 0394475697 9804263180 9917564228

0987399876 6973237695 7370158080 6822904599 2123661689

0259627304 3067931653 1149401764 7376938735 1409336183

3216142802 1497633991 8983548487 5625298752 4238730775

5955595546 5196394401 8218409984 1248982623 6737714672

2606163364 3296406335 7281070788 7581640438 1485018841

1431885988 2769449011 9321296827 1588841338 6943468285

9006664080 6314077757 7257056307 2940049294 0302420498

4165654797 3670548558 0445865720 2276378404 6682337985

2827105784 3197535417 9501134727 3625774080 2134768260

4502285157 9795797647 4670228409 9956160156 9108903845

8245026792 6594205550 3958792298 1852648007 0683765041

8365620945 5543461351 3415257006 5974881916 3413595567

1964965403 2187271602 6485930490 3978748958 9066127250

7948282769 3895352175 3621850796 2977851461 8843271922

3223810158 7444505286 6523802253 2843891375 2738458923

8442253547 2653098171 5784478342 1582232702 0690287232



3300538621 6347988509 4695472004 7952311201 5043293226

6282727632 1779088400 8786148022 1475376578 1058197022

2630971749 5072127248 4794781695 7296142365 8595782090

8307332335 6034846531 8730293026 6596450137 1837542889

7557971449 9246540386 8179921389 3469244741 9850973346

2679332107 2686870768 0626399193 6196504409 9542167627

8409146698 5692571507 4315740793 8053239252 3947755744

1591845821 5625181921 5523370960 7483329234 9210345146

2643744980 5596103307 9941453477 8457469999 2128599999

3996122816 1521931488 8769388022 2810830019 8601654941

6542616968 5867883726 0958774567 6182507275 9929508931

8052187292 4610867639 9589161458 5505839727 4209809097

8172932393 0106766386 8240401113 0402470073 5085782872

4627134946 3685318154 6969046696 8693925472 5194139929

1465242385 7762550047 4852954768 1479546700 7050347999

5888676950 1612497228 2040303995 4632788306 9597624936

1510102436 5553522306 9061294938 8599015734 6610237122

3547891129 2547696176 0050479749 2806072126 8039226911

0277722610 2544149221 5765045081 2067717357 1202718024

2968106203 7765788371 6690910941 8074487814 0490755178



2038565390 9910477594 1413215432 8440625030 1802757169

6508209642 7348414695 7263978842 5600845312 1406593580

9041271135 9200419759 8513625479 6160632288 7361813673

7324450607 9244117639 9759746193 8358457491 5988097667

4470930065 4634242346 0634237474 6660804317 0126005205

5928493695 9414340814 6852981505 3947178900 4518357551

5412522359 0590687264 8786357525 4191128887 7371766374

8602766063 4960353679 4702692322 9718683277 1739323619

2007774522 1262475186 9833495151 0198642698 8784717193

9664976907 0825217423 3656627259 2844062043 0214113719

9227852699 8469884770 2323823840 0556555178 8908766136

0130477098 4386116870 5231055314 9162517283 7327286760

0724817298 7637569816 3354150746 0883866364 0693470437

2066886512 7568826614 9730788657 0156850169 1864748854

1679154596 5072342877 3069985371 3904300266 5307839877

6385032381 8215535597 3235306860 4301067576 0838908627

0498418885 9513809103 0423595782 4951439885 9011318583

5840667472 3702971497 8508414585 3085781339 1562707603

5639076394 7311455495 8322669457 0249413983 1634332378

9759556808 5683629725 3867913275 0555425244 9194358912



8405045226 9538121791 3191451350 0993846311 7740179715

1228378546 0116035955 4028644059 0249646693 0707769055

4810288502 0808580087 8115773817 1917417760 1733073855

4758006056 0143377432 9901272867 7253043182 5197579167

9296996504 1460706645 7125888346 9797964293 1622965520

1687973000 3564630457 9308840327 4807718115 5533090988

7025505207 6804630346 0865816539 4876951960 0440848206

5967379473 1680864156 4565053004 9881616490 5788311543

4548505266 0069823093 1577765003 7807046612 6470602145

7505793270 9620478256 1524714591 8965223608 3966456241

0519551052 2357239739 5128818164 0597859142 7914816542

6328920042 8160913693 7773722299 9833270820 8296995573

7727375667 6155271139 2258805520 1898876201 1416800546

8736558063 3471603734 2917039079 8639652296 1312801782

6797172898 2293607028 8069087768 6605932527 4637840539

7691848082 0410219447 1971386925 6084162451 1239806201

1318454124 4782050110 7987607171 5568315407 8865439041

2108730324 0201068534 1947230476 6667217498 6986854707

6781205124 7367924791 9315085644 4775379853 7997322344

5612278584 3296846647 5133365736 9238720146 4723679427



8700425032 5558992688 4349592876 1240075587 5694641370

5625140011 7971331662 0715371543 6006876477 3186755871

4878398908 1074295309 4106059694 4315847753 9700943988

3949144323 5366853920 9946879645 0665339857 3888786614

7629443414 0104988899 3160051207 6781035886 1166020296

1193639682 1349607501 1164983278 5635316145 1684576956

8710900299 9769841263 2665023477 1672865737 8579085746

6460772283 4154031144 1529418804 7825438761 7707904300

0156698677 6795760909 9669360755 9496515273 6349811896

4130433116 6277471233 8817406037 3174397054 0670310967

6765748695 3587896700 3192586625 9410510533 5843846560

2339179674 9267844763 7084749783 3365557900 7384191473

1988627135 2595462518 1604342253 7299628632 6749682405

8060296421 1463864368 6422472488 7283434170 4415734824

8183330164 0566959668 8667695634 9141632842 6414974533

3499994800 0266998758 8815935073 5781519588 9900539512

0853510357 2613736403 4367534714 1048360175 4648830040

7846416745 2167371904 8310967671 1344349481 9262681110

7399482506 0739495073 5031690197 3185211955 2635632584

3390998224 9862406703 1076831844 6607291248 7475403161



7969941139 7387765899 8685541703 1884778867 5929026070

0432126661 7919223520 9382278788 8098863359 9116081923

5355570464 6349113208 5918979613 2791319756 4909760001

3996234445 5350143464 2686046449 5862476909 4347048293

2941404111 4654092398 8344435159 1332010773 9441118407

4107684981 0663472410 4823935827 4019449356 6516108846

3125678529 7769734684 3030614624 1803585293 3159734583

0384554103 3701091676 7763742762 1021370135 4854450926

3071901147 3184857492 3318167207 2137279355 6795284439

2548156091 3728128406 3330393735 6242001604 5664557414

5881660521 6660873874 8047243391 2129558777 6390696903

7078828527 7538940524 6075849623 1574369171 1317613478

3882719416 8606625721 0368513215 6647800147 6752310393

5786068961 1125996028 1839309548 7090590738 6135191459

1819510297 3278755710 4972901148 7171897180 0469616977

7001791391 9613791417 1627070189 5846921434 3696762927

4591099400 6008498356 8425201915 5937037010 1104974733

9493877885 9894174330 3178534870 7603221982 9705797511

9144051099 4235883034 5463534923 4982688362 4043327267

4155403016 1950568065 4180939409 9820206099 9414021689



0900708213 3072308966 2119775530 6659188141 1915778362

7292746156 1857103721 7247100952 1423696483 0864102592

8874579993 2237495519 1221951903 4244523075 3513380685

6807354464 9951272031 7448719540 3976107308 0602699062

5807602029 2731455252 0780799141 8429063884 4373499681

4582733720 7266391767 0201183004 6481900024 1308350884

6584152148 9912761065 1374153943 5657211390 3285749187

6909441370 2090517031 4877734616 5287984823 5338297260

1361109845 1484182380 8120540996 1252745808 8109948697

2216128524 8974255555 1607637167 5054896173 0168096138

0381191436 1143992106 3800508321 4098760459 9309324851

0251682944 6726066613 8151745712 5597549535 8023998314

6982203613 3808284993 5670557552 4712902745 3977621404

9318201465 8008021566 5360677655 0878380430 4134310591

8046068008 3459113664 0834887408 0057412725 8670479225

8319127415 7390809143 8313845642 4150940849 1339180968

4025116399 1936853225 5573389669 5374902662 0923261318

8558915808 3245557194 8453875628 7861288590 0410600607

3746501402 6278240273 4696252821 7174941582 3317492396

8353013617 8653673760 6421667781 3773995100 6589528877



4276626368 4183068019 0804609849 8094697636 6733566228

2915132352 7888061577 6827815958 8669180238 9403330764

4191240341 2022316368 5778603572 7694154177 8826435238

1319050280 8701857504 7046312933 3537572853 8660588890

4583111450 7739429352 0199432197 1171642235 0056440429

7989208159 4307167019 8574692738 4865383343 6145794634

1759225738 9858800169 8014757420 5429958012 4295810545

6510831046 2972829375 8416116253 2562516572 4980784920

9989799062 0035936509 9347215829 6517413579 8491047111

6607915874 3698654122 2348341887 7229294463 3517865385

6731962559 8520260729 4767407261 6767145573 6498121056

7771689348 4917660771 7052771876 0119990814 4113058645

5779105256 8430481144 0261938402 3224709392 4980293355

0731845890 3553971330 8844617410 7959162511 7148648744

6861124760 5428673436 7090466784 6867027409 1881014249

7111496578 1772427934 7070216688 2956108777 9440504843

7528443375 1088282647 7197854000 6509704033 0218625561

4733211777 1174413350 2816088403 5178145254 1964320309

5760186946 4908868154 5285621346 9883554445 6024955666

8436602922 1951248309 1060537720 1980218310 1032704178



3866544718 1260397190 6884623708 5751808003 5327047185

6594994761 2424811099 9288679158 9690495639 4762460842

4065930948 6215076903 1498702067 3533848349 5508363660

1784877106 0809804269 2471324100 0946401437 3603265645

1845667924 5666955100 1502298330 7984960799 4988249706

1723674493 6122622296 1790814311 4146609412 3415935930

9585407913 9087208322 7335495720 8075716517 1876599449

8569379562 3875551617 5754380917 8052802946 4200447215

3962807463 6021132942 5591600257 0735628126 3873310600

5891065245 7080244749 3754318414 9401482119 9962764531

0680066311 8382376163 9663180931 4446712986 1552759820

1451410275 6006892975 0246304017 3514891945 7636078935

2855505317 3314164570 5049964438 9093630843 8744847839

6168405184 5273288403 2345202470 5685164657 1647713932

3775517294 7951261323 9822960239 4548579754 5865174587

8771331813 8752959809 4121742273 0035229650 8089177705

0682592488 2232215493 8048371454 7816472139 7682096332

0508305647 9204820859 2047549985 7320388876 3916019952

4091893894 5576768749 7308569559 5801065952 6503036266

1597506622 2508406742 8898265907 5106375635 6996821151



0949669744 5805472886 9363102036 7823250182 3237084597

9011154847 2087618212 4778132663 3041207621 6587312970

8112307581 5982124863 9807212407 8688781145 0165582513

6178903070 8608701989 7588980745 6643955157 4153631931

9198107057 5336633738 0382721527 9884935039 7480015890

5194208797 1130805123 3933221903 4662499171 6915094854

1401871060 3546037946 4337900589 0957721180 8044657439

6280618671 7861017156 7409676620 8029576657 7051291209

9079443046 3289294730 6159510430 9022214393 7184956063

4056189342 5130572682 9146578329 3340524635 0289291754

7087256484 2600349629 6116541382 3007731332 7298305001

6025672401 4185152041 8907011542 8857992081 2198449315

6999059182 0118197335 0012618772 8036812481 9958770702

0753240636 1259313438 5955425477 8196114293 5163561223

4966615226 1473539967 4051584998 6035529533 2924575238

8810136202 3476246690 5581643896 7863097627 3655047243

4864307121 8494373485 3006063876 4456627218 6661701238

1277156213 7974614986 1328744117 7145524447 0899714452

2885662942 4402301847 9120547849 8574521634 6964489738

9206240194 3518310088 2834802492 4908540307 7863875165



9113028739 5878709810 0772718271 8745290139 7283661484

2142871705 5317965430 7650453432 4600536361 4726181809

6997693348 6264077435 1999286863 2383508875 6683595097

2655748154 3194019557 6850437248 0010204137 4983187225

9677387154 9583997184 4490727914 1965845930 0839426370

2087563539 8216962055 3248032122 6749891140 2678528599

6734052420 3109179789 9905718821 9493913207 5343170798

0023736590 9853755202 3891164346 7185582906 8537118979

5262623449 2483392496 3424497146 5684659124 8918556629

5893299090 3523923333 3647435203 7077010108 4388003290

7598342170 1855422838 6161721041 7603011645 9187805393

6744747205 9985023582 8918336929 2233732399 9480437108

4196594731 6265482574 8099482509 9918330069 7656936715

9689364493 3488647442 1350084070 0660883597 2350395323

4017958255 7036016936 9909886711 3210979889 7070517280

7558551912 6993067309 9250704070 2455685077 8679069476

6126298082 2516331363 9952117098 4528092630 3759224267

4257559989 2892783704 7444521893 6320348941 5521044597

2618838003 0067761793 1381399162 0580627016 5102445886

9247649246 8919246121 2531027573 1390840470 0071435613



6231699237 1694848132 5542009145 3041037135 4532966206

3921054798 2439212517 2540132314 9027405858 9206321758

9494345489 0684639931 3757091034 6332714153 1622328055

2297297953 8018801628 5907357295 5416278867 6498274186

1642187898 8574107164 9069191851 1628152854 8679417363

8906653885 7642291583 4250067361 2453849160 6741373401



Check the Sources



Source(s):



http://mathworld.wolfram.com/piformulas....



http://mathforum.org/library/drmath/view...



3.1415926535897932384626433832...



www.joyofpi.com/pifacts.html



http://www.cacr.caltech.edu/~roy/upi/pi....



http://www.yahoo.com/science/mathematics...



http://oldweb.cecm.sfu.ca/personal/jborw...



http://www.cs.uwaterloo.ca/~alopez-o/mat...



http://www.eveandersson.com/pi/...





http://newton.ex.ac.uk/research/qsystems...



http://newton.ex.ac.uk/research/qsystems...



http://www.maa.org/mathland/mathland_3_1...



www.math.hmc.edu/funfacts/ffil...



www.angio.net/pi/piquery



pi.nersc.gov





PBS.org - Nova Website - Look for the show entitled "Infinite Secrets"- Explain how Archimedes appoximated the value of pi along with a formula for the pi value







1. P. Beckmann, A History of p, St. Martin's Press, 1971; MR 56 #8261.



2. J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, 1987, pp. 46-52, 169-177, 337-362, 385-386; MR 99h:11147.



3. E. F. Assmus, Pi, Amer. Math. Monthly 92 (1985) 213-214.

T. Wayman, Discovering Archimedes' method for p, Mathcad file wayman.mcd, substantial revision by S. Finch.



4. G. M. Phillips, Archimedes and the complex plane, Amer. Math. Monthly 91 (1984) 108-114; MR 85h:40003.



5. G. Miel, Of calculations past and present: the Archimedean algorithm, Amer. Math. Monthly 90 (1983) 17-35; MR 85a:01006.



6. H. Dörrie, 100 Great Problems of Elementary Mathematics: Their History and Solution, Dover, 1965; MR 84b:00001.



7. E. Waymire, Buffon Noodles, Amer. Math. Monthly 101 (1994) 550-559; addendum 101 (1994) 791; MR 95g:60021a and MR 95g:60021b.



8. E. Wegert and L. N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly 101 (1994) 132-139; preprint; MR 95b:30036.



9. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford, 1985; MR 81i:10002.



10. A. E. Taylor and R. Mann, Advanced Calculus, 2nd ed., Wiley, 1972; MR 83m:26001.



11. R. D. Carmichael and E. R. Smith, Mathematical Tables and Formulas, Dover, 1931.



12. M. R. Spiegel, Advanced Calculus, McGraw-Hill, 1968.



13. J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan, modular equations, and approximations to pi, or how to compute one billion digits of pi, Amer. Math. Monthly 96 (1989) 201-219; Organic Mathematics, ed. J. Borwein, P. Borwein, L. Jörgenson and R. Corless, Amer. Math. Soc., 1997, pp. 35-71; MR 90d:11143.



14. G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the Arithmetic-Geometric Mean, Ellipses, p, and the Ladies Diary, Amer. Math. Monthly 95 (1988) 585-608; MR 89j:01028.



15. D. V. Chudnovsky and G. V. Chudnovsky, The computation of classical constants, Proc. Natl. Acad. Sci., USA 86 (1989) 8178-8182; MR 90m:11206.



16. D. V. Chudnovsky and G. V. Chudnovsky, Classical constants and functions: computations and continued fraction expansions, Number Theory: New York Seminar 1989-1990, Springer-Verlag, 1991, pp. 13-74; MR 93c:11118.



17. J. M. Borwein and P. B. Borwein, More Ramanujan-type series for 1/p, Ramanujan Revisited, Proc. 1987 Univ. of Illinois conf., Academic Press, 1988, pp. 375-472; MR 89d:11118.



18. R. Courant and H. Robbins, What is Mathematics?, Oxford, 1941; MR 93k:00002.



19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed., Academic Press, 1980, pp. 342, 956; MR 97c:00014.



20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1972; MR 94b:00012.



21. A. M. Odlyzko, Asymptotic enumeration methods, Handbook of Combinatorics, v. II, ed. R. L. Graham, M. Grötschel and L. Lovász, MIT Press, 1995, pp. 1063-1229; preprint; MR 97b:05012.



22. P. Flajolet and A. Odlyzko, The average height of binary trees and other simple trees, J. Comp. Sys. Sci. 25 (1982) 171-213; MR 84a:68056.



23.J. B. Conway, Functions of One Complex Variable, 2nd ed. Springer-Verlag, 1978; MR 80c:30003.



24. G. F. Simmons, Differential Equations with Applications and Historical Notes, McGraw-Hill, 1972; MR 58 #17258.



25. G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976; MR 99c:11126.



26. L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North Holland, 1992, pp. 561-562; MR 93g:30007.



27. R. Williams, Arctangent Formulas for Pi (Calif. Instit. of Technology).



28. J. J. O'Connor and E. F. Robertson, Pi Through the Ages (Univ. of St. Andrews).



29. Y. Kanada, Latest Record in Computing Pi (University of Tokyo).



30. S. Rabinowitz and S. Wagon, A spigot algorithm for the digits of p, Amer. Math. Monthly 102 (1995) 195-203; MR 96a:11152.



31. P. R. Lorczak, p: A programming example, Mathcad file spigot.mcd, Mathcad Treasury, Mathsoft electronic book.



32. J. Wimp, Book review of "Pi and the AGM", SIAM Review 30 (1988) 530-533.



33. P. R. Lorczak, Computing p, Mathcad file pihist.mcd, Applied Mathcad, April 1992.



34. J. M. Borwein and F. G. Garvan, Approximations to pi via the Dedekind eta function, Organic Mathematics, ed. J. Borwein, P. Borwein, L. Jörgenson and R. Corless, Amer. Math. Soc., 1997, pp. 89-115; MR 98j:11030.



35. D. H. Bailey, J. M. Borwein, P. B. Borwein and S. Plouffe, The quest for pi, Math. Intellig. 19 (1997) 50-57; CECM preprint 96:070; MR 98b:01045.



36. L. B. W. Jolley, Summation of Series, 2nd rev. ed., Dover, 1961; MR 24 #B511.



37. J. Borwein, Talking about Pi ? (CECM).



38. P. Borwein, Pi and Other Constants (CECM).



39.The Uselessness of Pi and its Irrational Friends.



41. G. Almkvist, Many correct digits of p, revisited, Amer. Math. Monthly 104 (1997) 351-353; MR 98a:11189.

Madhava,



42. The power series for arctan and p, ~1400; Pi: A Source Book, 2nd ed., ed. L. Berggren, J. M.



43. Borwein and P. B. Borwein, Springer-Verlag, 2000; MR 98f:01001.



44. K. Brown, Rounding up to pi (MathPages).



45. P. Erdös and E. Jabotinsky, On sequences of integers generated by a sieving process, Konink. Nederl. Akad. Wetensch. Proc. Ser. A 61 (1958) 115-128; Indag. Math. 20 (1958) 20 115-128; MR 21 #2628.



46. D. Betten, Kalahari and the sequence "Sloane No. 377", Combinatorics '86, ed. A. Barlotti, M. Marchi and G. Tallini, North Holland, Ann. Discrete Math. 37 (1988) 51-58; MR 89f:05010.



47. N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, AT&T Research, A002491.



48. M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, III, J. Reine Angew. Math. 10 (1833) 241-274.



49. K. Brown, Integer Sequences Related to Pi (MathPages).



50. D. Blatner, The Joy of Pi, Walker and Co., 1997.



51. O. Toeplitz, The Calculus: A Genetic Approach, Univ. of Chicago Press, 1981; MR 11,584e.





52. T. M. Apostol et al, Selected Papers in Calculus, Math. Assoc. Amer., 1968, pp. 368-388.



53. D. C. van Leijenhorst, Algorithms for the approximation of p, Nieuw Archief Wisk. 14 (1996) 255-274; MR 98b:11130.



54. V. Adamchik and S. Wagon, A simple formula for p, Amer. Math. Monthly 104 (1997) 852-854; MR 98h:11166.



55. I. Vardi, Pi Exists (Institut des Hautes Etudes Scientifiques).



56. I. Vardi, Extending Archimedes' method, unpublished manuscript (1998); What is ancient mathematics?, Math. Intellig. 21 (1999) 38-47; preprint.



57.M. D. Hirschhorn, A new formula for p, Gazette Austral. Math. Soc. 25 (1998) 82-83; expanded preprint; MR 99d:01046.



58. D. M. Bradley, Evaluating the Gaussian integral, (1998).



59. J. Miller and T. Ladd, Infinite summations and integrals of a class of band-limited functions, (1998).



60. Dihedral angle of regular tetrahedron, sci.math.research discussion, Oct. 1998.



61. Volume of n-dimensional ball, Mathsoft puzzle solution, Nov. 1998.



62.A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, v. I, Holden-Day, 1964; problems 92-93; MR 88m:00012a.



63.A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, v. II, Holden-Day, 1967; problems 139-147; MR 88m:00012b.



64. L. J. Lange, An elegant continued fraction for p, Amer. Math. Monthly 106 (1999) 456-458.



65. R. W. Gosper, M. E. H. Ismail and R. Zhang, On some strange summation formulas, Illinois J. Math. 37 (1993) 240-277; MR 95g:33025.



66.G. Almkvist and H. S. Wilf, On the coefficients in the Hardy-Ramanujan-Rademacher formula for p(n), J. Number Theory 50 (1995) 329-334; reprint; MR 96e:11129.



67. D. H. Bailey and D. J. Broadhurst, Parallel integer relation detection: techniques and applications, (1999), math.NA/9905048.



68. H. Havermann, Simple Continued Fraction Expansion of Pi.



69. B. Gourevitch, The Pi-World.



70. G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, 1999, p. 58, ex. 52; MR 2000g:33001.



71. W. Scharlau and H. Opolka, From Fermat to Minkowski, Springer-Verlag, 1985; pp. 30, 83; MR 85m:11003.



72. R. Knott, Pi and the Fibonacci Numbers (Univ. of Surrey).



73. T. J. Osler, The union of Vieta's and Wallis's products for pi, Amer. Math. Monthly 106 (1999) 774-776.



74. X. Gourdon and P. Sebah, The constant pi and PiFast: the fastest program to compute pi (Numbers, Constants and Computation).



75. R. Roy, The discovery of the series formula for p by Leibniz, Gregory and Nilakantha, Math. Magazine 63 (1990) 291-306; Pi: A Source Book, pp. 92-107; MR 92a:01029.



76. J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, Special values of multidimensional polylogarithms, Trans. Amer. Math. Soc., to appear; math.CA/9910045; CECM preprint 98:106.



77. D. Bailey, P. Borwein and S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997) 903-913; MR 98d:11165.



78. A. Lupas, Some BBP-functions, (2000).



79. P. Eymard and J.-P. Lafon, Autour du nombre p, Hermann, 1999.



80. S. D. Dubey, Statistical determination of certain mathematical constants and functions using computers, J. Assoc. Comput. Mach. 13 (1966) 511-525; MR 34 #2149.



81. J. M. Borwein and I. J. Zucker, Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind, IMA J. Numer. Analysis 12 (1992) 519-529; MR 93g:65028.



82. G. M. Phillips, Archimedes the numerical analyst, Amer. Math. Monthly 88 (1981) 165-169; Pi: A Source Book, pp. 15-19; MR 83e:01005.



83. E. Salamin, Computation of p using arithmetic-geometric mean, Math. Comp. 30 (1976) 565-570; MR 53 #7928.



84. R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM 23 (1976) 242-251; MR 52 #16111.



85. D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan Revisited, Proc. 1987 Univ. of Illinois conf., Academic Press, 1988, pp. 375-472; MR 89f:11099.



86. Y. David, On a sequence generated by a sieving process, Riveon Lematematika 11 (1957) 26-31; MR 21 #2627.



87. D. M. Broline and D. E. Loeb, The combinatorics of Mancala-type games: Ayo, Tchoukaitlon, and 1/p, UMAP Journal 16 (1995) 21-36, preprint.



88. N. J. A. Sloane, My favorite integer sequences, Sequences and their Applications, Proc. 1998 SETA conf., ed. C. Ding, T. Helleseth and H. Niederreiter, Springer-Verlag, 1999, pp. 103-130; preprint.



89. G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 17 (1918) 75-115.



90. H. Rademacher, On the partition function p(n), Proc. London Math. Soc. 43 (1937) 241-254.



91. Y. V. Matiyasevich and R. K. Guy, A new formula for p, Amer. Math. Monthly 93 (1986) 631-635; MR 2000i:11199.

Archimedes' Approximation of Pi (Florida Gulf Coast University).



92. G. L. Cohen and A. G. Shannon, John Ward's method for the calculation of pi, Historia Math. 8 (1981) 133-144; MR 83d:01021.



93. L. Euler, Introduction to Analysis of the Infinite. Book I, 1748, transl. J. D. Blanton, Springer-Verlag, 1988, pp. 137-153, 311-312; MR 89g:01067.



94. F. Viète, Variorum de Rebus Mathematicis Reponsorum Liber VIII, 1593; Pi: A Source Book, pp. 53-56, 690-706.



95. J. Wallis, Computation of p by successive interpolations, Arithmetica Infinitorum, 1655; Pi: A Source Book, pp. 68-80.



96. J. Gregory, correspondence with J. Collins, 1671; Pi: A Source Book, pp. 87-91.



97. G. W. Leibniz, Schediasma de serierum summis, et seriebus quadraticibus, 1674; J. M. Child, The Early Mathematical Manuscripts of Leibniz, transl. from texts published by C. I. Gerhardt, Open Court Publishing, 1920, pp. 60-61.



98. Archimedes, Measurement of a circle, ~250 BC; Pi: A Source Book, pp. 7-14.



99.S. Ramanujan, Modular equations and approximations to p, Quart. J. Math. 45 (1914) 350-72.



100. Alternating series, e-message (1995).



101 .An asymptotic expansion, USENET sci.math.research newsgroup discussion (1996).



102. J. Carette, Proof of a limit, e-message (1996).



103. S. Kogan, More infinite products involving pi, e-message (1997).



104. Trigonometric power formulas, e-discussion (1997).



Mathographic by Robert Dixion pubished by Dover publications



Handbook of Mathematical tables and Formulas by Richard Steven Burington published by the Mcgraw Hill Book Co.



a History of Pi ( a good book on the subject of Pi) by Peter Beckmann



The Joy of Pi ( other good book on Pi)



PI: A Biography of the world most Mystrious Number by Alfered S Postamentier, Ingmar Lehmann, Herbert A Hauptman ( afterword) ( other good book on the subject)



Project Mathemetics - by Cal Tech - Vhs tapes series - seen the Nasa Tv education entitled "The Story of PI" and is available from Cal Tec or NASA website



Check out the Internet websites for Pi. By typing Pi in one of the search engines and see what website pop up.



WHAT A ANSWER HUH
FeSO4
2006-08-13 13:27:06 UTC
Lot's of answers! Perhaps the digits for the value of pi " has been discovered"!



I don't think there is an exact value for pi since it is considered as an irrational number. Most irrational numbers are not exact. If you were to write it up to 6-7 decimal places, it will be an approximate value. :D
Search first before you ask it
2006-08-13 06:11:53 UTC
Pi=3.14159265358979323846264338327950288419716939937510
LeBlanc
2006-08-13 07:39:54 UTC
22/7
Rex
2006-08-13 06:09:11 UTC
I have seen it written on an entire roll of toilet tissue - hundreds of places after the decimal point. It just keeps on going.
SAMUEL D
2006-08-13 10:01:17 UTC
Pi is the ratio of the circumferance of a circle to its diameter.



π = 3.141592654...



The three dots means an infinite Number of nonrepeating numbers.
Timothy K
2006-08-13 06:10:13 UTC
Here is Pi to 50 places:



3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
Sk8erboi83
2006-08-14 23:45:24 UTC
TT=3.14592654
the oracle
2006-08-13 16:25:01 UTC
its 22/7 to be precise.....

if you get that no. in decimal forms then you have an infinite nos. following the decimal.
Huma
2006-08-13 09:41:52 UTC
pi= 22/7

=3.14285714
lmcplav
2006-08-13 06:44:45 UTC
The Windows XP calculator gives exactly 3.1415926535897932384626433832795. If microsoft is not correct, they will change reality in next version of Windows.
maths_dumbass
2006-08-13 06:09:16 UTC
well i think the most accurate value we can use for pi is 22/7 but, again. when this is divided, u will have an infinite value. it goes on and on.
gravytrain036
2006-08-13 07:20:05 UTC
Can't really tell you, cause I would need infinite paper. Can't 3.14 be good enough for ya?
Arkangyle
2006-08-13 06:15:15 UTC
3.1415926536 ... that's as far as I bothered to memorize, as it was the number of digits displayed on my calculator during high school.
wl5201
2006-08-13 06:11:16 UTC
there isn't an exact value for pi.. 3.141592654
anonymous
2006-08-13 06:09:25 UTC
a long number line......some dude tried calculating the end of it, but he got to like 1500 characters and saw no pattern, so he stopped....maybe you should try to beat him....:)
P P
2006-08-13 06:14:38 UTC
22/7



Look at this for a billion digits after the 3.14159265



http://ja0hxv.calico.jp/pai/epivalue.html
skuxyliliex
2006-08-13 06:16:29 UTC
3.1415926535397..... and sooooooo on. hey check this out its a song about pi. if u think its cool give me 10 pnts!



http://www.vvc.edu/ph/TonerS/mathpi.html



its kool. plssssss. ten points! YAY thanks. ( if u do)
Texas Cowboy
2006-08-13 06:06:07 UTC
3.1416

It is an infinite number and this is as far as I go.
meetaravindhere
2006-08-13 06:55:15 UTC
3.141592653
anonymous
2006-08-13 09:26:58 UTC
3.14159265
z_o_r_r_o
2006-08-13 06:06:40 UTC
3.1415926535
Gestalt
2006-08-13 06:05:52 UTC
3.14159265
Gopi
2006-08-13 07:15:18 UTC
3.142857
slo-mo accident
2006-08-13 06:05:52 UTC
3.144444
suppy_sup
2006-08-13 06:08:19 UTC
3.141592



That's all I know!
nayanmange
2006-08-13 08:16:15 UTC
3.14159......
blackolivesrule
2006-08-13 06:11:29 UTC
3.14159265..............


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...