for n =1 it is true so let it be true for n = k
P(k) = (b^k - a^k)
so b^k - a^k = (b-a)(P(k)) ----------------------(1)
so it should be true for n = k+1
P(k+1) = b^(k+1) - a^(k+1)
note the identity b^(k+1) - a^(k+1) = (1/2)*[(b^k + a^k)(b -a) + (b^k - a^k)*(b+a)]
so P(k+1) = (1/2)*[(b^k + a^k)(b -a) + (b^k - a^k)*(b+a)]
P(k+1) = (1/2)*[(b^k + a^k)(b -a) + (b-a)*P(k)*(b+a)] --------------------[ From equation 1]
take b - a common.
P(k+1) = b-a*(1/2)*[b^k + a^k + P(k)*(b+a)]
so P(k+1) is divisible by b-a
Hence it is true for any n belongs to natural number.