The boundary is missing a z-value (from the surface or something).
Assuming that the ellipse lies on the xy-plane, I'll assume that z = 0.
By Stokes' Theorem, ∫∫s curl F · dS = ∫c F · dr.
Parameterizing C via r(t) = <7 cos t, 4 sin t, 0> for t in [0, 2π],
∫c F · dr
= ∫(t = 0 to 2π) <2 * 4 sin t, 4 sin t, 0> · <-7 sin t, 4 cos t, 0> dt
= ∫(t = 0 to 2π) (-56 sin^2(t) + 16 sin t cos t) dt
= ∫(t = 0 to 2π) (-28 (1 - cos(2t)) + 16 sin t cos t) dt
= ∫(t = 0 to 2π) (-28 + 28 cos(2t) + 16 sin t cos t) dt
= (-28t + 14 sin(2t) + 8 sin^2(t)) {for t = 0 to 2π}
= -56π.
I hope this helps!