/- (P > (Q v R)) <> ((P > Q) v (P > R))
(1) 1. P > (Q v R) Assumption
(2) 2. ~((P > Q) v (P > R)) Assumption
(3) 3. P Assumption
(1,3) 4. Q v R 1,3 MP
(5) 5. Q Assumption
(6) 6. ~R Assumption
(3,6) 7. P & ~R 3,6 &I
(3,5,6) 8. Q & (P & ~R) 5,7 &I
(3,5,6) 9. Q 8 &E
(5,6) 10. P > Q 3,9 CP
(5,6) 11. (P > Q) v (P > R) 10 vI
(5) 12. ~R > ((P > Q) v (P > R)) 6,11 CP
(2,5) 13. ~~R 2,11 MT
(2,5) 14. R 13 DNE
(15) 15. R Assumption
(1,2,3) 16. R 4,5,14,15,15 vE
(1,2) 17. P > R 3,16 CP
(1,2) 18. (P > Q) v (P > R) 17 vI
(1,2) 19. ((P > Q) v (P > R)) & ~((P > Q) v (P > R)) 18,2 &I
(1) 20. ~~((P > Q) v (P > R)) 2,19 RAA
(1) 21. (P > Q) v (P > R) 20 DNE
(-) 22. (P > (Q v R)) > ((P > Q) v (P > R)) 1,21 CP
(23) 23. (P > Q) v (P > R) Assumption
(24) 24. P > Q Assumption
(3,24) 25. Q 3,24 MP
(3,24) 26. Q v R 25 vI
(27) 27. P > R Assumption
(3,27) 28. R 3,27 MP
(3,27) 29. Q v R 28 vI
(3,23) 30. Q v R 23,24,26,27,29 vE
(23) 31. P > (Q v R) 3,30 CP
(-) 32. ((P > Q) v (P > R)) > (P > (Q v R)) 23,31 CP
(-) 33. (P > (Q v R)) <> ((P > Q) v (P > R)) 22,32 <>I
If P is false, then P > Q and P > R are both true. Hence, if P is false, then (P > Q) & (P > R) is true. If Q is true and R is false, then Q > R is false. Hence, on the supposition that P is false, Q is true, and R is false, (P > Q) & (P > R) is true, but Q > R is false. Thus, ((P > Q) & (P > R)) > (Q > R) is not a logical truth.