Question:
what is a matrix?
j p
2006-09-12 22:24:29 UTC
what is a matrix?
Seventeen answers:
The Emperor
2006-09-12 22:48:59 UTC
A matrix is an arrangement of items into labeled rows and columns within a table.



It shows the relationship between two categories of features that are relevant to the items in the matrix. The row headings represent features belonging to one category. The column headings represent features belonging to another category.



Each column or row contains items having the feature described in the heading. Each cell in the matrix represents an item characterized by the features in the corresponding column and row.
anonymous
2006-09-13 05:39:35 UTC
Matrix - A matrix is an object upon which a design has been placed and which is then used to make an impression on a piece of paper, thus creating a print. A wood block, metal plate, or lithographic stone can be used as a matrix.
kurd
2006-09-13 07:13:31 UTC
A matrix is an arrangement of items into labeled rows and columns within a table.

It shows the relationship between two categories of features that are relevant to the items in the matrix. The row headings represent features belonging to one category. The column headings represent features belonging to another category.



example

In the following sentences, the dog died is the matrix sentence:



After eating the raw fish, the dog died.

The dog that ate the raw fish died.
doug_donaghue
2006-09-13 05:37:52 UTC
Mostly correct, except that a matrix does *not* have to be square. The only time that a matrix *must* be square is when it's being used as a transformation between two vector spaces with the same dimension.





Doug
dinu
2006-09-13 05:43:39 UTC
Away from maths, matrix means substances like Biological matrix it means that the composition of it.



It is important in analysis of an unknown and comparing it with a standard which must have nearly same matrix (composition).
Gypsy Catcher
2006-09-13 05:33:05 UTC
A matrix a simply an array of numbers (or variables) that is sometimes used to facilitate manipulations.

Nowadays, Matrix Theory is a subject in its own right. And it's a beautiful subject !
sndprssr
2006-09-13 05:26:52 UTC
In mathematics, a matrix (plural matrices) is a rectangular table of numbers or, more generally, a table consisting of abstract quantities that can be added and multiplied. Matrices are used to describe linear equations, keep track of the coefficients of linear transformations and to record data that depend on two parameters. Matrices can be added, multiplied, and decomposed in various ways, marking them as a key concept in linear algebra and matrix theory.
rachna
2006-09-13 05:55:13 UTC
a rectangular arrangement of numbers,in the form of horizontal and vertical lines is called a matrix.horizontal lines are called rows and the vertical lines are called columns.each number of matrix is called its element.the elements are together enclosed in a brackets [ ].if the matrix has 'm' rows and 'n'columns then the order of matrix is m*n and it has mn elements.
gaya n
2006-09-13 05:46:10 UTC
a matrix is simply an array of numbers
KILLER NINJA!
2006-09-13 05:49:38 UTC
FIRST SEE THE TWO CINEMAS MATRIX AND MATRIX RELOADED AND THEN ASK
anonymous
2006-09-13 12:21:29 UTC
It is nothing but organized way of collection of all the points. In algebraic context, it is nothing but collection of coefficients of simultaneous linear equations.
-----
2006-09-16 09:01:56 UTC
Its a furniture shop in cunningham road.
Ashish B
2006-09-13 10:00:55 UTC
In mathematics, a matrix (plural matrices) is a rectangular table of numbers or, more generally, a table consisting of abstract quantities that can be added and multiplied. Matrices are used to describe linear equations, keep track of the coefficients of linear transformations and to record data that depend on two parameters. Matrices can be added, multiplied, and decomposed in various ways, marking them as a key concept in linear algebra and matrix theory.



In this article, the entries of a matrix are real or complex numbers unless otherwise noted.



The horizontal lines in a matrix are called rows and the vertical lines are called columns. A matrix with m rows and n columns is called an m-by-n matrix (written m×n) and m and n are called its dimensions. The dimensions of a matrix are always given with the number of rows first, then the number of columns.



The entry of a matrix A that lies in the i -th row and the j-th column is called the i,j entry or (i,j)-th entry of A. This is written as Ai,j or A[i,j].



We often write to define an m × n matrix A with each entry in the matrix A[i,j] called aij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. However, the convention that the indices i and j start at 1 is not universal: some programming languages start at zero, in which case we have 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.



A matrix where one of the dimensions equals one is often called a vector, and interpreted as an element of real coordinate space. A 1 × n matrix (one row and n columns) is called a row vector, and an m × 1 matrix (one column and m rows) is called a column vector.



Example

The matrix





is a 4×3 matrix. The element A[2,3] or a2,3 is 7.



The matrix





is a 1×9 matrix, or 9-element row vector.



[edit]

Adding and multiplying matrices

[edit]

Sum

Main article: Matrix addition

Given m-by-n matrices A and B, their sum A + B is the m-by-n matrix computed by adding corresponding elements (i.e. (A + B)[i, j] = A[i, j] + B[i, j] ). For example:





Another, much less often used notion of matrix addition is the direct sum.



[edit]

Scalar multiplication

Main article: Matrix multiplication

Given a matrix A and a number c, the scalar multiplication cA is computed by multiplying the scalar c by every element of A (i.e. (cA)[i, j] = cA[i, j] ). For example:





[edit]

Matrix multiplication

Main article: Matrix multiplication

Multiplication of two matrices is well-defined only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix (m rows, p columns) given by:





for each pair i and j.



For example:





These two operations turn the set M(m, n, R) of all m-by-n matrices with real entries into a real vector space of dimension mn.



Matrix multiplication has the following properties:



(AB)C = A(BC) for all k-by-m matrices A, m-by-n matrices B and n-by-p matrices C ("associativity").

(A + B)C = AC + BC for all m-by-n matrices A and B and n-by-k matrices C ("right distributivity").

C(A + B) = CA + CB for all m-by-n matrices A and B and k-by-m matrices C ("left distributivity").

It is important to note that commutativity does not generally hold; that is, given matrices A and B and their product defined, then generally AB ≠ BA.



[edit]

Linear transformations, ranks and transpose

Main article: Transformation matrix

Matrices can conveniently represent linear transformations because matrix multiplication neatly corresponds to the composition of maps, as will be described next. This same property makes them powerful data structures in high-level programming languages.



Here and in the sequel we identify Rn with the set of "columns" or n-by-1 matrices. For every linear map f : Rn → Rm there exists a unique m-by-n matrix A such that f(x) = Ax for all x in Rn. We say that the matrix A "represents" the linear map f. Now if the k-by-m matrix B represents another linear map g : Rm → Rk, then the linear map g o f is represented by BA. This follows from the above-mentioned associativity of matrix multiplication.



More generally, a linear map from an n-dimensional vector space to an m-dimensional vector space is represented by an m-by-n matrix, provided that bases have been chosen for each.



The rank of a matrix A is the dimension of the image of the linear map represented by A; this is the same as the dimension of the space generated by the rows of A, and also the same as the dimension of the space generated by the columns of A.



The transpose of an m-by-n matrix A is the n-by-m matrix Atr (also sometimes written as AT or tA) formed by turning rows into columns and columns into rows, i.e. Atr[i, j] = A[j, i] for all indices i and j. If A describes a linear map with respect to two bases, then the matrix Atr describes the transpose of the linear map with respect to the dual bases, see dual space.



We have (A + B)tr = Atr + Btr and (AB)tr = Btr Atr.



[edit]

Square matrices and related definitions

A square matrix is a matrix which has the same number of rows and columns. The set of all square n-by-n matrices, together with matrix addition and matrix multiplication is a ring. Unless n = 1, this ring is not commutative.



M(n, R), the ring of real square matrices, is a real unitary associative algebra. M(n, C), the ring of complex square matrices, is a complex associative algebra.



The unit matrix or identity matrix In, with elements on the main diagonal set to 1 and all other elements set to 0, satisfies MIn=M and InN=N for any m-by-n matrix M and n-by-k matrix N. For example, if n = 3:





The identity matrix is the identity element in the ring of square matrices.



Invertible elements in this ring are called invertible matrices or non-singular matrices. An n by n matrix A is invertible if and only if there exists a matrix B such that



AB = In ( = BA).

In this case, B is the inverse matrix of A, denoted by A−1. The set of all invertible n-by-n matrices forms a group (specifically a Lie group) under matrix multiplication, the general linear group.



If λ is a number and v is a non-zero vector such that Av = λv, then we call v an eigenvector of A and λ the associated eigenvalue. (Eigen means "own" in German.) The number λ is an eigenvalue of A if and only if A−λIn is not invertible, which happens if and only if pA(λ) = 0. Here pA(x) is the characteristic polynomial of A. This is a polynomial of degree n and has therefore n complex roots (counting multiple roots according to their multiplicity). In this sense, every square matrix has n complex eigenvalues.



The determinant of a square matrix A is the product of its n eigenvalues, but it can also be defined by the Leibniz formula. Invertible matrices are precisely those matrices with nonzero determinant.



The Gaussian elimination algorithm is of central importance: it can be used to compute determinants, ranks and inverses of matrices and to solve systems of linear equations.



The trace of a square matrix is the sum of its diagonal entries, which equals the sum of its n eigenvalues.



Matrix exponential is defined for square matrices, using power series.



[edit]

Special types of matrices

In many areas in mathematics, matrices with certain structure arise. A few important examples are



Symmetric matrices are such that elements symmetric about the main diagonal (from the upper left to the lower right) are equal, that is, ai,j=aj,i.

Skew-symmetric matrices are such that elements symmetric about the main diagonal are the negative of each other, that is, ai,j= - aj,i. In a skew-symmetric matrix, all diagonal elements are zero, that is, ai,i=0.

Hermitian (or self-adjoint) matrices are such that elements symmetric about the diagonal are each others complex conjugates, that is, ai,j=a*j,i, where the superscript '*' signifies complex conjugation.

Toeplitz matrices have common elements on their diagonals, that is, ai,j=ai+1,j+1.

Stochastic matrices are square matrices whose columns are probability vectors; they are used to define Markov chains.

For a more extensive list see list of matrices.



[edit]

Matrices in abstract algebra

If we start with a ring R, we can consider the set M(m,n, R) of all m by n matrices with entries in R. Addition and multiplication of these matrices can be defined as in the case of real or complex matrices (see above). The set M(n, R) of all square n by n matrices over R is a ring in its own right, isomorphic to the endomorphism ring of the left R-module Rn.



Similarly, if the entries are taken from a semiring S, matrix addition and multiplication can still be defined as usual. The set of all square n×n matrices over S is itself a semiring. Note that fast matrix multiplication algorithms such as the Strassen algorithm generally only apply to matrices over rings and will not work for matrices over semirings that are not rings.



If R is a commutative ring, then M(n, R) is a unitary associative algebra over R. It is then also meaningful to define the determinant of square matrices using the Leibniz formula; a matrix is invertible if and only if its determinant is invertible in R.



All statements mentioned in this article for real or complex matrices remain correct for matrices over an arbitrary field.



Matrices over a polynomial ring are important in the study of control theory.



[edit]

History

The study of matrices is quite old. Latin squares and magic squares have been studied since prehistoric times.



Matrices have a long history of application in solving linear equations. Leibniz, one of the two founders of calculus, developed the theory of determinants in 1693. Cramer developed the theory further, presenting Cramer's rule in 1750. Carl Friedrich Gauss and Wilhelm Jordan developed Gauss-Jordan elimination in the 1800s.



The term "matrix" was first coined in 1848 by J. J. Sylvester. Cayley, Hamilton, Grassmann, Frobenius and von Neumann are among the famous mathematicians who have worked on matrix theory.



Olga Taussky Todd (1906-1995) started to use matrix theory when investigating an aerodynamic phenomenon called fluttering or aeroelasticity, during WWII.



[edit]

Applications

[edit]

Transportation

If one is given a list of cities (or destinations, nodes, etc) and is told that there are flights (or roads, connections, etc) from city a to city b, then one can build a square matrix with the cities indexing each side of the matrix. So each entry M[a,b] = 1 if there is a connection from a to b. If there is a reverse connection from b to a then also M[b,a] = 1. In many instances the connection a to b might not be bidirectional, ie M[a,b] = 1 does not necessarily imply that M[b,a] = 1. If there is no connection from a to b then M[a,b] = 0.



By multiplying the matrix M by itself to obtain M2, then M2 will indicate if two cities a and b can be reached by 1 or more layovers. That is, if for example M[a,b] = 0, but M2[a,b] = 1, then a and b are connected via a third city c, a layover between a and b. If M2[a,b] = n then a and b are connected via n layovers.
kinni
2006-09-13 05:52:43 UTC
set of numbers
quest
2006-09-13 06:11:33 UTC
it is a rectangular array of numbers
anonymous
2006-09-13 05:28:34 UTC
http://whatisthematrix.warnerbros.com/
pal r
2006-09-13 05:56:21 UTC
t34t36nhtu7oi


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...