There is no need to state what is constant, nor any need to change the variable used for the constant as the above answerer has done.
Integrate the original integrand by substitution:
-2 ∫ √x / (1 + √x) dx
Let u = √x,
x = u²
dx / du = 2u
dx = 2u du
-2 ∫ √x / (1 + √x) dx = -4 ∫ u² / (1 + u) du
Divide this expression by the comparing coefficients method:
u² / (1 + u) = Au + B + C / (1 + u)
u² = Au(1 + u) + B(1 + u) + C
u² = Au + Au² + B + Bu + C
u² = Au² + (A + B)u + (B + C)
A = 1
A + B = 0
B = -A
B = -1
B + C = 0
C = -B
C = 1
u² / (1 + u) = u - 1 + 1 / (1 + u)
Integrate the expression term by term using this result:
∫ u² / (1 + u) du = ∫ [u - 1 + 1 / (1 + u)] du
∫ u² / (1 + u) du = ∫ u du - ∫ 1 du + ∫ 1 / (1 + u) du
∫ u² / (1 + u) du = u² / 2 - u + ln|1 + u|
Put it all together to integrate the original function:
-2 ∫ √x / (1 + √x) dx = -4 ∫ u² / (1 + u) du
-2 ∫ √x / (1 + √x) dx = -4[u² / 2 - u + ln|1 + u|] + C
-2 ∫ √x / (1 + √x) dx = -2u² + 4u - 4ln|1 + u| + C
-2 ∫ √x / (1 + √x) dx = 4u - 2u² - 4ln|u + 1| + C
Since u = √x,
-2 ∫ √x / (1 + √x) dx = 4√x - 2x - 4ln(√x + 1) + C