Question:
Mathematics integral problem?
bill k
2011-07-22 05:38:18 UTC
Please integrate step by step:

-2 INT (x^(1/2))/(1+x^(1/2)) dx

Thank you in advance.
Four answers:
Rapidfire
2011-07-22 06:00:44 UTC
There is no need to state what is constant, nor any need to change the variable used for the constant as the above answerer has done.



Integrate the original integrand by substitution:

-2 ∫ √x / (1 + √x) dx

Let u = √x,

x = u²

dx / du = 2u

dx = 2u du

-2 ∫ √x / (1 + √x) dx = -4 ∫ u² / (1 + u) du



Divide this expression by the comparing coefficients method:

u² / (1 + u) = Au + B + C / (1 + u)

u² = Au(1 + u) + B(1 + u) + C

u² = Au + Au² + B + Bu + C

u² = Au² + (A + B)u + (B + C)

A = 1

A + B = 0

B = -A

B = -1

B + C = 0

C = -B

C = 1

u² / (1 + u) = u - 1 + 1 / (1 + u)



Integrate the expression term by term using this result:

∫ u² / (1 + u) du = ∫ [u - 1 + 1 / (1 + u)] du

∫ u² / (1 + u) du = ∫ u du - ∫ 1 du + ∫ 1 / (1 + u) du

∫ u² / (1 + u) du = u² / 2 - u + ln|1 + u|



Put it all together to integrate the original function:

-2 ∫ √x / (1 + √x) dx = -4 ∫ u² / (1 + u) du

-2 ∫ √x / (1 + √x) dx = -4[u² / 2 - u + ln|1 + u|] + C

-2 ∫ √x / (1 + √x) dx = -2u² + 4u - 4ln|1 + u| + C

-2 ∫ √x / (1 + √x) dx = 4u - 2u² - 4ln|u + 1| + C

Since u = √x,

-2 ∫ √x / (1 + √x) dx = 4√x - 2x - 4ln(√x + 1) + C
anonymous
2011-07-22 12:50:00 UTC
I will concentrate only on the integral. The coefficients in front can be worried about later.

Define: I = INT (x^(1/2))/(1+x^(1/2)) dx

Put (x^(1/2)) = t

=> x = (t^2)

=> dx = 2*t*dt



So I now becomes:

I = INT (t/(1+t))*(2*t*dt)

I = 2* INT (t^2/(1+t))*dt



Now, J = INT (t^2/(1+t))*dt

J = INT ((t^2-1+1)/(1+t))*dt

J = INT((t^2-1)/(1+t))*dt + INT (1/(1+t))*dt

J = INT({(t-1)*(t+1)}/(1+t))*dt + INT (1/(1+t))*dt

J = INT((t-1)*dt) + INT(1/(1+t))*dt

J = ((t-1)^2)/2 + ln(1+t) + C, C = arbitrary constant



Now substitute back for t

J = (([x^(1/2)]-1)^2)/2 + ln(1+[x^(1/2)]) + C

I = 2*(([x^(1/2)]-1)^2)/2 + ln(1+[x^(1/2)]) + C2, C2 = arbitrary constant
?
2011-07-22 13:24:30 UTC
For INT (x^(1/2))/(1+x^(1/2)) dx

let u=1+x^(1/2). Then

du=1/2x^(-1/2)dx=> 2xdu=2(u-1)du=dx and the intergral becomes

int{2(u-1)^2/udu}=int{2(u-2+1/u)du}

=2int{u-2+1/u}du

=2*(u^2/2-2u+Log(u)}

=(x^1/2+1)^2-4(x^(1/2)+1)+2log(x^(1/2)+1)

=x-2x^(1/2)+2log(x^(1/2)+1)-3.

Absorbing the -3 into the constant of integration gives

INT (x^(1/2))/(1+x^(1/2)) dx=x-2sqrt(x)+2log(sqrt(x)+1)+C



Hope that helps.
a_ebnlhaitham
2011-07-22 13:54:46 UTC
-2*(-2*Sqrt[x] + x + 2*Log[1 + Sqrt[x]]) +c :x>= 0


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...