I'm assuming you mean: [e^(4x)+e^x]/[e^(4x)+e^(2x)]
Let u = e^x
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = (u^4 + u)/(u^4 + u^2)
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = (u^4 + u^2 - u^2 + u)/(u^4 + u^2)
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = 1 - (u^2 - u)/(u^4 + u^2)
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = 1 - (u - 1)/(u^3 + u)
Lets use partial fractions since we can factor the denominator.
(u - 1)/(u^3 + u) = A/u + (Bu + C)/(u^2 + 1)
u - 1 = A(u^2 + 1) + (Bu + C)u
u - 1 = Au^2 + A + Bu^2 + Cu
u - 1 = (A + B)u^2 + Cu + A
Equating coefficients we find A = -1, C = 1 and B = 1 (since A + B = 0)
(u - 1)/(u^3 + u) = -1/u + (u + 1)/(u^2 + 1)
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = 1 - [-1/u + (u + 1)/(u^2 + 1)]
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = 1 + 1/u - (u + 1)/(u^2 + 1)
[e^(4x)+e^x]/[e^(4x)+e^(2x)] = 1 + 1/u - u/(u^2 + 1) - 1/(u^2 + 1)
Integrating this with respect to u
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)]dx = ∫[1 + 1/u - u/(u^2 + 1) - 1/(u^2 + 1)]dx
Now we have to determine dx in terms of u and du
u = e^x --> du = e^xdx = u dx --> dx = du/u
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)]dx = ∫[1 + 1/u - u/(u^2 + 1) - 1/(u^2 + 1)](du/u)
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)]dx = ∫[1/u + 1/u^2 - 1/(u^2 + 1) - 1/[u(u^2 + 1)]du
We need to use partial fractions again for the last term on the RHS.
1/[u(u^2 + 1)] = A/u + (Bu + C)/(u^2 + 1)
1 = A(u^2 + 1) + (Bu + C)u
1 = Au^2 + A + Bu^2 + Cu
1 = (A+B)u^2 + Cu + A
Equating the coefficients we find A=1, C=0 and B=-1 since A+B=0
1/[u(u^2 + 1)] = 1/u - u/(u^2 + 1)
Substitute this back into the integral.
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)]dx = ∫[1/u + 1/u^2 - 1/(u^2 + 1) - 1/u + u/(u^2 + 1)]du
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)]dx = ∫[1/u^2 - 1/(u^2 + 1) + u/(u^2 + 1)]du
Now the integral is solvable.
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)]dx = ∫[1/u^2 - 1/(u^2 + 1) + u/(u^2 + 1)]du
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)] = -1/u - arctan(u) + ½ln(u^2 + 1) + C
Substituting u = e^x yields
∫[e^(4x)+e^x]/[e^(4x)+e^(2x)] = -e^-x - arctan(e^x) + ½ln[e^(2x) + 1] + C
I am pretty sure this is correct.