Mathematics
Question:
How to find the derivative of y=r/(sqrt(r^2 + 1)?
pink_87210
2010-12-17 22:38:30 UTC
the answer is y'= (r^2 + 1)^-3/2 , I tried solving it, still I get wrong answer.
Please help.
Four answers:
TheSicilianSage
2010-12-17 22:46:34 UTC
... y = r (r² + 1)^(-1/2)
or dy/dr = r d/dr [(r² + 1)^(-1/2)] + (r² + 1)^(-1/2) d/dr [r]
or dy/dr = (-1/2) r (r² + 1)^(-3/2) d/dr [r²] + (r² + 1)^(-1/2)
or dy/dr = (-1/2) r (r² + 1)^(-3/2) [2r] + (r² + 1)^(-1/2)
or dy/dr = - r² / (r² + 1)^(3/2) + 1/ (r² + 1)^(1/2)
or dy/dr = [ - r² + (r² + 1) ] / (r² + 1)^(3/2)
or dy/dr = 1 / (r² + 1)^(3/2)
christopherthe1
2010-12-18 06:49:44 UTC
y = r/√(r²+1)
= r(r²+1)^-½
Use the Product Rule:
y' = r * [-½(2r)(r²+1)^(-3/2)] + (r²+1)^-½
= r * [-r/(r²+1)^(3/2)] + 1/(r²+1)^½
= -r²/(r²+1)^(3/2) + (r²+1)/(r²+1)^(3/2)
= (r²+1-r²) / (r²+1)^(3/2)
= 1/(r²+1)^(3/2)
= (r²+1)^(-3/2)
Moise Gunen
2010-12-18 06:49:49 UTC
y = [1* sqrt(r^2 + 1) - r * 1/2sqrt(r^2 + 1)* 2r] / [sqrt(r^2 + 1)]^2 =
[(r^2 + 1 - r^2)/sqrt(r^2 + 1)]/[sqrt(r^2 + 1)]^2 =
(r^2 + 1)^( -3/2)
Como
2010-12-18 07:37:24 UTC
y = r / ( r ² + 1 )^(1/2)
dy/dx by Quotient Rule :-
( r ² + 1 )^(1/2) - r (1/2) ( r ² + 1 )^(-1/2) ( 2 r )
---------------------------------------------------------
( r ² + 1 )
( r ² + 1 )^(1/2) - r ² ( r ² + 1 )^(-1/2)
-----------------------------------------------
( r ² + 1 )
( r ² + 1 )^(-1/2) [ ( r ² + 1 ) - r ² ]
------------------------------------------
r ² + 1
1
-------------------
( r ² + 1 )^(3/2
ⓘ
This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...