Integration by parts is much easier to do in terms of functions and derivatives rather than differentials, yet the first answerer has chosen the more complicated way.
Integrate the original integrand by parts:
∫ ℮˟cosx dx
Let f'(x) = cosx
f(x) = sinx
Let g(x) = ℮˟
g'(x) = ℮˟
∫ f'(x)g(x) dx = f(x)g(x) - ∫ f(x)g'(x) dx
∫ ℮˟cosx dx = ℮˟sinx - ∫ ℮˟sinx dx
Integrate the new integrand by parts:
∫ ℮˟sinx dx
Let f'(x) = sinx
f(x) = -cosx
Let g(x) = ℮˟
g'(x) = ℮˟
∫ f'(x)g(x) dx = f(x)g(x) - ∫ f(x)g'(x) dx
∫ ℮˟sinx dx = -℮˟cosx + ∫ ℮˟cosx dx
Put it all together to solve for the original integral:
∫ ℮˟cosx dx = ℮˟sinx - ∫ ℮˟sinx dx
∫ ℮˟cosx dx = ℮˟sinx - (-℮˟cosx + ∫ ℮˟cosx dx)
∫ ℮˟cosx dx = ℮˟sinx + ℮˟cosx - ∫ ℮˟cosx dx
2 ∫ ℮˟cosx dx = ℮˟sinx + ℮˟cosx
2 ∫ ℮˟cosx dx = ℮˟(sinx + cosx)
∫ ℮˟cosx dx = ℮˟(sinx + cosx) / 2 + C