Use the geometric series
1/(1 - t) = Σ(n=0 to ∞) t^n, convergent for |t| < 1.
a) 10x/(13 + x)
= 10 * [(x + 13) - 13] / (13 + x)
= 10 * [1 - 13/(13 + x)]
= 10 * [1 - 1/(1 + x/13)]
= 10 * [1 - 1/(1 - (-x/13))]
= 10 * [1 - Σ(n = 0 to ∞) (-x/13)^n], by the geometric series with t = -x/13
= 10 * [-Σ(n = 1 to ∞) (-x/13)^n]
= Σ(n = 1 to ∞) 10 (-1)^(n+1) * x^n /13^n
= Σ(n = 0 to ∞) 10 (-1)^n * x^(n+1) /13^(n+1), by reindexing the sum
= 10x/13 - 10x^2/169 + 10x^3 /13^3 - 10x^4 /13^4 + ...
This converges when |-x/13| < 1 <==> |x| < 13.
Hence, the radius of convergence is 13.
---------
b) f(x) = 9 * 1/(1 - (-36x^2))
= 9 * Σ(n=0 to ∞) (-36x^2)^n, by the geometric series with t = -36x^2
= Σ(n=0 to ∞) 9(-36)^n x^(2n).
= 9 + 0x - 9 * 36x^2 + 0x^3 + 9 * 36^2 x^4 + ...
This converges when |-36x^2| < 1 <==> |x| < 1/6.
So, the radius of convergence is 1/6.
I hope this helps!