Question:
What is the value of p^3/(q^4+r^4) +q^3/(p^4+r^4) +r^3/(p^4+q^4) from this equation?
Don Leon
2013-12-25 09:48:49 UTC
The roots of the cubic equation
x^3 -4x^2 +5x -6 =0
are p,q, and r.

What is the value of
p^3/(q^4+r^4) +q^3/(p^4+r^4) +r^3/(p^4+q^4) ?
Four answers:
?
2013-12-25 15:39:20 UTC
[p^3(p^4+q^4)(p^4+r^4)+q^3(p^4+q^4)(q^4+r^4)+r^3(r^4+q^4)(p^4+r^4)]

/(p^4+q^4)(p^4+r^4)(q^4+r^4)

bottom is p^8q^4+p^8r^4+q^8p^4+ q^8r^4+r^8q^4+r^8p^4+ 2p^4r^4q^4

= p^4q^4(p^4+q^4+r^4) +p^4r^4(p^4+q^4+r^4) +q^4r^4(p^4+q^4+r^4) -p^4q^4r^4

=(p^4+q^4+r^4) (p^4q^4 + p^4r^4 +q^4r^4) - p^4q^4r^4

numerator is p^7(p^4+q^4+r^4)+ p^3q^4r^4 + q^7(p^4+q^4+r^4) + p^4q^3r^4

+ r^7(p^4+q^4+r^4) +p^4q^4r^3

=(p^7+ q^7+r^7) (p^4+q^4+r^4) + p^3q^3r^3 (pq+qr+pr)



p+q+r=4, pqr =5, pq+qr+pr=6

p^2+q^2+r^2=(p+q+r)^2-2(pq+qr+pr)=4

p^3+q^3+r^3=(p+q+r)^3- 3(p+q+r) (pq+pr+qr) +3pqr= 7

p^4+q^4+r^4 = (p^2+q^2+r^2)^2 - 2(p^2q^2+ r^2p^2+ q^2r^2)

= (p^2+q^2+r^2)^2 - 2[ (pq+qr+pr)^2 -2prq(p+q+r)]

= 16-2[-4]=24

(p^2q^2+ r^2p^2+ q^2r^2)=-4

p^7+q^7+r^7 = p^3+q^3+r^3 * p^4+q^4+r^4 -[

p^3q^4+p^4q^3 + p^3r^4+p^4r^3+ r^3q^4+r^4q^3]

= p^3+q^3+r^3 * p^4+q^4+r^4 -

(p^3q^3+p^3r^3+q^3r^3) (p+q+r)+ (p^2q^2+q^2r^2+p^2r^2) (pqr)

=p^3+q^3+r^3 * p^4+q^4+r^4 -

{(pq+qr+pr) (p^2q^2+ r^2p^2+ q^2r^2)- pqr [(pq+qr+pr) (p+q+r)-3pqr]}

(p+q+r)+ (p^2q^2+q^2r^2+p^2r^2) (pqr)

7*24- {6*-4- 5[6*4-3*5]}4+-4*5 =168- {-24-5[9 ]}4-20

=424

p^4q^4 + p^4r^4 +q^4r^4= (p^2q^2 + p^2r^2 +q^2r^2)^2 -2p^2q^2r^2 (p^2+q^2+r^2)

=16-2*5*5*4= -184

(424*24+5^3*6)/(24*-184-5^4)

10926/-5041 = -2/1674
Indica
2013-12-26 11:29:11 UTC
For interest, I’ll do this without extracting the real root. Mike’s method is the quickest (but he made

some slips). This way might be used if you can’t extract easily.



∑ p³/(q⁴+r⁴) = { ∑ p³(q⁴+p⁴)(r⁴+p⁴) } / ((q⁴+r⁴)(r⁴+p⁴)(p⁴+q⁴) }





∑ p³(q⁴+p⁴)(r⁴+p⁴) = ∑ { p³q⁴r⁴ + p⁷(q⁴+r⁴+p⁴) }



Derivation of various sums used is given at the end



∑ p³q⁴r⁴ = (pqr)³∑qr = 6³*5 = 1080



∑ p⁷(p⁴+q⁴+r⁴) = ∑p⁷ * ∑p⁴ = 2174*82



∴ ∑ p³(q⁴+p⁴)(r⁴+p⁴) = 179348





(q⁴+r⁴)(r⁴+p⁴)(p⁴+q⁴) = (82−p⁴)(82−q⁴)(82−r⁴)



= 82³ − 82²*∑p⁴ + 82*∑p⁴q⁴ − (pqr)⁴ = 82*97 − 6⁴ = 6658



∴ ∑ p³/(q⁴+r⁴) = 179348 / 6658 = 89674/3329







………………………………………



p³ = 4p² − 5p + 6 = 0 … (i)



∑p=4, ∑pq=5, pqr=6, ∑p² = (∑p)²−2∑pq = 6



Let S(n) = ∑pⁿ



Then multiply (i) by pⁿ and sum to get for n≥0 : S(n+3) = 4S(n+2)−5S(n+1)+6S(n)



Applying repeatedly using S(1)=5, S(2)=6 gives the results



S(3)=22, S(4)=82, S(5)=254, S(6)=738, S(7)=2174, S(8)=6530



Also 2∑ p⁴q⁴ = (∑p⁴)² − ∑ p⁸ → ∑ p⁴q⁴ = ½(82²−6530) = 97



………………………………………



edit : A more elegant way to do this is to develop the cubic equation (in y) whose roots correspond to the three given values involved in the sum. Here this involves eliminating x from the equations



x³−4x²+5x−6=0 and y=x³/(82−x⁴)



This comes to −3329y³ + 89674y² + 5639y + 108 = 0



More than you requested but does lead to an interesting general approach for problems of this type.



………………………………………
ANONYMOUS
2013-12-25 17:51:46 UTC
the roots are 3,

.5+isqrt(7)/2.

.5-isqrt(7)/2
Let'squestion
2013-12-25 19:03:39 UTC
p+q+r = 4 -------------- (1)

pq+qr+rp = 5-----------(2) and

pqr = 6


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...