Multiply together the Maclaurin Series for e^(2x) and sin(2x).
Using the said series, we have
e^(2x) = 1 + (2x) + (2x)^2/2! + (2x)^3/3! + (2x)^4/4! + ...
.........= 1 + 2x + 2x^2 + (4/3)x^3 + (2/3) x^4 + ...
sin(2x) = (2x) - (2x)^3/3! + (2x)^5/5! - ...
..........= 2x - (4/3) x^3 + (4/15) x^5 - ...
Using the Distributive property yields
e^(2x) sin(2x)
= [1 + 2x + 2x^2 + (4/3)x^3 + (2/3)x^4 + ...] [2x - (4/3)x^3 + (4/15)x^5 - ...]
= 2x + 4x^2 + (4 - 4/3) x^3 + (8/3 - 8/3) x^4 + (4/3 - 8/3 + 4/15) x^5 + ...
= 2x + 4x^2 + (8/3) x^3 - (16/15) x^5 + ...
Double checked with Wolfram Alpha:
http://www.wolframalpha.com/input/?i=taylor+series+e^%282x%29+sin%282x%29
I hope this helps!