We derive a formula for the number of n digit-long strings of the given type: For any integer n ≥ 2
• let O_(n) be the set of n digit {O, X}-strings beginning with O and not containing substrings OO, XXX
• let O_OX(n) be the subset of O_(n) whose elements end with OX,
• let O_XO(n) be the subset of O_(n) whose elements end with XO,
• let O_XX(n) be the subset of O_(n) whose elements end with XX.
For example [1]:
O_OX(2) = {OX}, . . . . . . . . . . . . . . . . O_XO(2) = {}, . . . . . . . . . . . . . . . . . . .O_XX(2) = {},
O_OX(3) = {}, . . . . . . . . . . . . . . . . . . .O_XO(3) = {OXO}, . . . . . . . . . . . . . . .O_XX(3) = {OXX},
O_OX(4) = {OXOX}, . . . . . . . . . . . . . O_XO(4) = {OXXO}, . . . . . . . . . . . . . .O_XX(4) = {},
O_OX(5) = {OXXOX}, . . . . . . . . . . . . O_XO(5) = {OXOXO}, . . . . . . . . . . . . O_XX(5) = {OXOXX},
O_OX(6) = {OXOXOX}, . . . . . . . . . . .O_XO(6) = {OXXOXO,OXOXXO}, . . . O_XX(6) = {OXXOXX},
O_OX(7) = {OXXOXOX,OXOXXOX}, O_XO(7) = {OXOXOXO,OXXOXXO}, O_XX(7) = {OXOXOXX},
·
.
:
Since O_OX(n), O_XO(n), O_XX(n) are pairwise disjoint and together have union O_(n), we have
|O_(n)| = |O_OX(n)| + |O_XO(n)| + |O_XX(n)|,
where |•| denotes set cardinality. Moreover note for all n ≥ 3 that
• appending an X puts O_XO(n–1) in a 1-to-1 correspondence to O_OX(n),
• appending an O puts O_OX(n–1) ∪ O_XX(n–1) in a 1-to-1 correspondence to O_XO(n),
• appending an X puts O_OX(n–1) in a 1-to-1 correspondence to O_XX(n).
Thus
[2]: |O_OX(n)| = |O_XO(n–1)|,
[3]: |O_XO(n)| = |O_OX(n–1)| + |O_XX(n–1)|,
[4]: |O_XX(n)| = |O_OX(n–1)|.
This lets us obtain a 3rd order linear recursion on A(n) := |O_XO(n)|:
|O_XO(n)|
= |O_OX(n–1)| + |O_XX(n–1)| . . . . . . via [3]
= |O_XO(n–2)| + |O_OX(n–2)| . . . . . . via [2] and [4]
= |O_XO(n–2)| + |O_XO(n–3)| . . . . . . via [2].
So
[5]: A(n) = A(n–2) + A(n–3).
We already know from example [1] above that (A(2), ... , A(7)) = (0, 1, 1, 1, 2 ,2), corroborating [5]. With a few more applications of [5] we get
(A(2), ... , A(19)) = (0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65).
So the answer is 65.