You need to rewrite 1/(x−6) in the form a/(1−bx)
which has power series: a + a(bx) + a(bx)² + a(bx)³ + ...
then differentiate both sides, and finally multiply by Cx²
1/(x−6) = −1/6 * 1/(1−x/6)
1/(x−6) = −1/6 [1 + x/6 + (x/6)² + (x/6)³ + (x/6)⁴ + ...]
1/(x−6) = −1/6 [1 + x/6 + x²/6² + x³/6³ + x⁴/6⁴ + ...]
Differentiate:
−1/(x−6)² = −1/6 [1/6 + 2x/6² + 3x²/6³ + 4x³/6⁴ + ...]
Multiply both sides by −3x²
3x²/(x−6)² = x²/2 [1/6 + 2x/6² + 3x²/6³ + 4x³/6⁴ + ...]
3x²/(x−6)² = x²/(2·6) + 2x³/(2·6²) + 3x⁴/(2·6³) + 4x⁵/(2·6⁴) + ...
3x²/(x−6)² = 3·1x²/(6·6) + 3·2x³/(6·6²) + 3·3x⁴/(6·6³) + 3·4x⁵/(6·6⁴) + ...
3x²/(x−6)² = 3·1(x/6)² + 3·2(x/6)³ + 3·3(x/6)⁴ + 3·4(x/6)⁵ + ...
f(x) = 3x²/(x−6)² = Σ [n = 1 to ∞] 3n(x/6)ⁿ⁺¹
This is true for:
|x/6| < 1
|x| < 6
——————————————————————————————
Alternate method
We can use generalized form of binomial expansion for (1+a)ⁿ
when n is negative or rational:
(1+a)ⁿ = C(n,0) + C(n,1) a + C(n,2) a² + C(n,3) a³ + ...
(1+a)ⁿ = 1 + n!/(1! (n−1)!) a + n!/(2! (n−2)!) a² + n!(3! (n−3)!) a³ + ...
(1+a)ⁿ = 1 + n/1! a + n(n−1)/2! a² + n(n−1)(n−2)/3! a³ + ...
3x²/(x−6)²
= 3x²/(−6(1−x/6))²
= 3x²/(36(1−x/6)²)
= 3x²/36 (1−x/6)⁻²
= 3(x/6)² [1 + (−2)/1! (−x/6) + (−2)(−3)/2! (−x/6)² + (−2)(−3)(−4)/3! (−x/6)³
........... + (−2)(−3)(−4)(−5)/4! (−x/6)⁴ + . . .]
= 3(x/6)² [1 + 2(x/6) + 3(x/6)² + 4(x/6)³ + 5(x/6)⁴ + . . .]
= 3·1(x/6)² + 3·2(x/6)³ + 3·3(x/6)⁴ + 3·4(x/6)⁵ + 3·5(x/6)⁶ + . . .